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Abstract

Triangular B�splines lend themselves naturally to
problems such as blending and the �lling of poly�
gonal holes� Here we present an automatic method
for smoothly blending piecewise polynomial surfaces
using triangular B�splines�
The method proceeds in two phases� In the �rst
phase� the domain of the region to be blended or
�lled is triangulated and populated with basis func�
tions� In the second phase� coe�cients for these basis
functions are found by minimizing a functional that
measures the curvature of the blending or �lling sur�
face�
Examples are provided that show the use of this
method for a number of blending and �lling prob�
lems�
Keywords� Blending� Filling Polygonal Holes� DMS

splines� Triangular B�splines� Surface Smoothing

� Introduction

Triangular B�splines or DMS splines �DMS�	
 are a
new tool for the modeling of complex objects with
non�rectangular topology� Since any piecewise poly�
nomial can be represented in the new scheme� DMS
splines o�er themselves naturally for problems such
as blending and the �lling of polygonal holes� Al�
though this fact has been pointed out before� all
previous solutions have required considerable user�
interaction� and an automatic algorithm for blending
and�or the �lling of polygonal holes based on DMS
splines has not been available�

In this paper� we present an automatic method
for solving blending and �lling problems using DMS
splines� We presume that the surfaces that are to be
blended or �lled are already expressed in DMS form�
with appropriate domain triangulations� There is no
restriction� since every piecewise polynomial can be

represented as a DMS spline �Sei�

� The method
proceeds in two phases� In the �rst phase� the
triangulation of the domain of the existing surface
or surfaces is extended to encompass the region of
the domain corresponding to the intended blend or
�ll� Vertices for the extended triangulation are then
found with the help of techniques from the �nite�
elements literature� New vertices are successively ad�
ded and the Delaunay triangulation of those points
formed� Together with the automatic assignment of
knot clouds� this procedure yields the basis functions
of the new blending or �lling surface�

In the second phase� the control points of the new
surface are selected in such a way as to smoothly con�
nect the new surface with preexisting patches and to
minimize surface curvature� The control points are
chosen such that a quadratic functional approximat�
ing the curvature of the surface is minimized� The
minimization problem can thus be expressed as a
system of linear equations and solved by standard
methods�

The paper is organized as follows� Section 	 re�
views the de�nitions of bivariate DMS splines and
highlights their major attributes� Section � shows
how we construct the extended triangulation needed
to form a blending or �lling surface� Section � de�
scribes the minimization problem used to set the val�
ues of new control points arising from the extended
triangulation� Section � summarizes the entire pro�
cedure and gives examples showing the use of this
technique for a number of blending and �lling prob�
lems� Finally� we present our conclusions and sug�
gestions for further work in Section ��

� Triangular B�Splines

The triangular B�splines of �DMS�	
 are a �exible ex�
tension of B�spline curves to the surface case� These



surfaces o�er properties such as a�ne invariance and
local control� and exhibit the Convex Hull Property�
Moreover� every degree n piecewise polynomial over
a triangulation T can be represented as a DMS spline
surface�

The following discussion reviews the mathematics
of DMS splines� A broader introduction can be found
in �Sei�

�

��� Simplex Splines

Simplex splines �Mic��
 form the individual basis
functions for the DMS spline surface� A degree n

simplex spline is de�ned recursively as follows� Let
u and knots t�� � � � � tn�� be points in R

� � and let
V be the set ft�� � � � � tn��g� Furthermore� select an
a�nely independent set W � fti� � ti� � ti�g from V �
Then� for n � �� the degree n simplex splineM�ujV �
is de�ned as

M�ujV � �

�X
j��

�j�ujW �M�ujV nftijg� �
�

where �j�ujW � are the barycentric coordinates of u
with respect to W �

Let d�ti� tj � tk� be twice the signed area of
��ti� tj � tk�� When n � �� we de�ne

M�ujt�� t�� t�� �
��t��t��t���u�

jd�t�� t�� t��j
�	�

where ��t��t��t�� is the characteristic function on the
half�open convex hull � �t�� t�� t���

��� DMS Splines

A DMS spline surface �DMS�	
 is formed by consid�
ering the vertices of a triangulation augmented with
additional points� knot clouds � from which we build a
collection of simplex splines to act as basis functions
for our surface� Let T be an arbitrary proper tri�
angulation of some bounded domain D � R

� � with
vertices t�� � � � � tl� �Proper� means that every pair
of domain triangles are either disjoint� share exactly
one edge� or share exactly one vertex�

A sequence of knots ti��� � � � � ti�n called a knot

cloud is assigned to each vertex ti� with ti�� � ti� For
each triangle ��t�� t�� t�� � T � we place the restric�
tion that �t��i� t��j � t��k� must always form a proper
triangle� We then de�ne� for each �� the knot sets

V �
ijk � ft���� � � � � t��i� t���� � � � � t��j � t���� � � � � t��kg ���

�u is in �t�� t�� t�� if we can �nd a wedge�shaped triangle
� �u� u� �	� s�� u� �t� 	�� � s� t � 	 that is contained within
the convex hull of ft�� t�� t�g �Sei
��


Figure 
� Issues involved in triangulating a blend
or �ll region� Left� specifying which edges to blend
only de�nes part of the parametric boundary of the
region� Right� using only boundary vertices to ex�
tend a triangulation can yield elongated triangles�

where i� j� k � n� which yields the simplex splines
M�ujV �

ijk��

If we let d�ijk be d�t��i� t��j � t��k�� then the

normalized B�splines are de�ned as N�
ijk�u� �

d�ijkM�ujV �
ijk�� Each N�

ijk�u� is a DMS basis func�
tion� and normalization ensures that they sum to
one�

A degree n DMS spline surface F over triangula�
tion T is then de�ned as

F �u� �
X
��T

X
i�j�k�n

c�ijkN
�
ijk�u�� c�ijk � R

	 � ���

� Triangulating the Blend or

Hole Region

We begin with the assumption that the surfaces ad�
jacent to the region to be �lled and�or blended are
already expressed in triangular B�spline form� with
corresponding domain triangulations� This does not
restrict the class of surfaces to be blended� since
every piecewise polynomial can be represented as a
triangular B�spline� The problem then is to auto�
matically extend these triangulations to the as yet
untriangulated region� The newly triangulated re�
gion should contain triangles that match the scale
of the existing triangles� If the new triangles are of
the same scale as the older triangles� then the corres�
ponding basis functions will exhibit the same degree
of in�uence on the shape of the �nal surface� Fur�
thermore� the newly generated triangles must not
be overly elongated� since keeping the new triangles
�fat� prevents numerical problems�

In order to properly extend the neighbouring re�
gions� the newly triangulated region should share



edges� vertices and knot clouds with the given re�
gions along its boundary� We then rely on the math�
ematical properties of triangular B�splines to ensure
maximal parametric continuity between the old sur�
faces and the new blending��lling surface�

In both blending and hole �lling problems� the
parametric region to be triangulated must be iden�
ti�ed� most appropriately as a boundary polygon�
This is the natural form of boundary speci�cation
for hole �lling problems� A blending problem might�
however� specify only some segments of this bound�
ary �Figure 
�� In this case� the procedure must
complete the boundary before triangulation can con�
tinue�

In order to complete the boundary� we join con�
secutive boundary pieces with a new edge� The res�
ulting polygon de�nes the parametric boundary of
the blend surface� If the length l of the new edge
is longer than the average length lavg of the two
edges that it joins� then the new edge is split into
l

lavg
shorter edges� by introducing l

lavg
� 
 new ver�

tices uniformly into the new edge� This keeps the
lengths of newly introduced edges consistent with
those already given�

Once the boundary polygon is complete� an ex�
tended triangulation could be formed that only uses
vertices from that polygon� Such a triangulation is
more than likely to contain elongated triangles �Fig�
ure 
�� Moreover� when individual triangles span
the entire gap� there are very few degrees of free�
dom available for �fairing� the blending��lling sur�
face� Therefore we should introduce new vertices as
appropriate into the parametric region to be trian�
gulated�

��� Selection of Vertices

Forming triangulations of given boundary polygons
is common practice in �nite�element analysis� where
the physical properties of an object are analyzed
by dividing the object into a number of small ele�
ments �Cav��� JS��� BWS���
� We will use the
technique outlined in �WH��
 to build our triangula�
tion� This technique incrementally adds new vertices
while maintaining a Delaunay triangulation �For��
�
The Delaunay triangulation maximizes the minimum
internal angle of all triangles and thus discourages
elongated triangles�

Once the domain polygons encompassing the re�
gion to be �lled or blended �from now on the region�
are determined� a simple triangulation is formed us�
ing only the vertices of the boundary� A robust

Figure 	� A domain hole is triangulated� On the left�
an initial triangulation using only boundary vertices
is formed� On the right� the �nal triangulation�

method is given in �SRK��
� This initial triangu�
lation is likely to contain triangles that are quite
elongated� To obtain a better triangulation we must
introduce vertices into the interior of the region and
retriangulate�

An appropriate approach is given in �WH��
�
which incrementally chooses new vertices within the
region� and then reforms the Delaunay triangulation�
The key idea of this approach is to assign a scale

to each vertex� which represents the minimum ac�
ceptable distance between a vertex and its nearest
neighbouring vertices� Whenever a new vertex is
considered� a value for this distance is estimated and
used to decide whether or not to use the vertex in
the triangulation�

The initial vertices of the region are assigned
scales that are the average of the lengths of the two
boundary edges to which they belong� During each
iteration� the centroids of the currently existing tri�
angles are examined and possibly added to a list of
candidate vertices� At the end of an iteration step�
these candidate vertices are introduced into the tri�
angulation� and the candidate list is cleared� The
entire process ends when no more candidates can be
introduced �see Figure 	��

The centroid of triangle � is accepted as a can�
didate if it passes the following checks� First� the
centroid is assigned a scale that is the average of the
scales of the vertices of �� The distance from the
centroid to any of these vertices must be less than
this scale� or else the centroid is rejected� If the
distance from the centroid to already accepted can�
didates is also greater than this scale� the centroid is
added as a candidate to the list� At the end of the
iteration step� accepted candidates are added to the
triangulation� and the Delaunay property is reestab�
lished�



do f
�nd candidates for insertion

for each existing triangle �
compute the centroid ci and scale
ci�
for each corner r of ��

verify dist
ci� r� � � scale
ci� and

dist
ci� r� � � scale
r�
if veri�ed� add ci to the list of candidates

check that new vertices lie far enough apart

for each candidate ci
for each accepted candidate cj

if dist
ci� cj� � � scale
ci� and

dist
ci� cj� � � scale
cj�
accept candidate ci

put the triangulation back into shape

rebuild triangulation to include accepted candidates
reestablish the triangulation Delaunay property

g until no more accepted candidates

Figure �� Pseudo�code of the Weatherill�Hass�an al�
gorithm for re�ning a triangulation based on vertex
density criterion�

The above checks can also be modi�ed by mul�
tiplying the distance scale by a variable parameter�
In the �rst check� a factor � can be used� which af�
fects the density of the triangulation created� while
in the second check� a factor � can be used to
vary the regularity of the triangulation �see �WH��
��
Pseudo�code for the algorithm is found in Figure ��
As a �nal step� the quality of the new triangulation
can be improved� using other techniques �see for ex�
ample� �Cav��� BWS���
�� in order to promote sym�
metry or other properties that may be desired�

Once the region has been triangulated� the newly
inserted vertices may need to be moved in order to
prevent them from lying collinearly with knots from
preexisting knot clouds� Those vertices which are
collinear have their position perturbed in order to
ensure that the resulting surface will exhibit max�
imal parametric continuity between preexisting sur�
faces and the new surface�

��� De�ning Knot Clouds

Once the triangulation of the region is complete� the
new vertices must be assigned knot clouds� The as�
signment of knot clouds de�nes the DMS basis func�
tions for the blending or �lling surface� The already
existing knots de�ne� in pairs� lines in the parameter
space which must be avoided in order to maintain
maximal parametric continuity� Knots are placed

Figure �� Smoothing a polygonal data set using a
fairing functional� Left� the polygonal data� Right�
the smoothed surface�

successively in order to avoid those �forbidden lines��
in a manner similar to that given in �AGNS�
� page
�

�

��� World Space Relationships

The above triangulation is formed in the parameter
space of the spline surface� We assume that the user
has assigned appropriate parametric triangulations
to the original surfaces before blending�� For ex�
ample� if the surfaces being blended are far apart
in world space� then placing their corresponding tri�
angulations close together in parameter space will
generate long thin patches in the �nal blend� Like�
wise� if the triangular patches of the surfaces to be
blended are of similar size in world space� then the
user should try to ensure that their triangulations
contain triangles of comparable parametric size� In
short� the user should take into account the world
space relationships of the given surfaces when for�
mulating the blending or �lling problem�

� Fairing by Minimizing a

Functional

Fairing is the process of altering a surface to make it
smoother� Surface fairing usually proceeds by de�n�
ing some fairness functional for a given set of sur�
faces� then �nding the surface F that minimizes the
functional with respect to that set� Numerous func�
tionals have been proposed and used successfully for
fairing �MS�	� WW�	� Gre��a� Gre��b
� Figure �
shows a polygonal dataset of a face smoothed using

�Since DMS surfaces are a�nely invariant� a�ne trans�
formations of the parameter space do not alter the �nal
surface




a fairing function	� If the chosen functional is quad�
ratic then we can reformulate the minimization prob�
lem as a linear system� which can then be solved us�
ing matrix techniques� Furthermore� a unique min�
imum is guaranteed to exist if the bilinear form of
the functional is positive de�nite for the given set of
basis functions�

The simplest functional that can be used to min�
imize surface curvature is the linearized thin plate en�
ergy functional L�F �x� y�� �Gre��a� Gre��b� CG�
�
HKD��� PS��
� de�ned as

L�F � �

Z



jjFxxjj
� � 	 jjFxyjj

� � jjFyyjj
� dxdy� ���

The action of the functional is restricted to the re�
gion �� which localizes the corresponding smooth�
ing e�ect� We use the technique given in �PS��
 to
minimize this functional for quadratic DMS splines�
Since we do not extend this technique here� we refer
the reader to �PS��
 for further details�

The linearized thin plate energy is a good ap�
proximation to the true energy only if the given
parameterization is close to isometric� In blending
applications this is often the case� In more gen�
eral situations� the linearized thin plate energy has
to be replaced by a quadratic functional based on
the Laplace�Beltrami operator �Gre��b
� Due to the
quadratic nature of this functional� its minimum can
again be found by solving a linear system� as above�

� Summary and Examples

We now summarize the steps involved in automat�
ically �nding a blending or �ll surface� First� the
parametric boundary of the blending or �lling re�
gion is established� and any additional boundary ver�
tices are created as necessary� An extended trian�
gulation is then formed that shares boundary edges
with the adjacent regions� Next� new vertices are
created within the region and its Delaunay triangu�
lation is formed� Knot clouds are then assigned to
each new vertex� de�ning the DMS basis functions
for the blending��lling surface� Finally� the minimiz�
ation problem is formed for the new basis functions�
giving a linear system that is solved using standard
techniques from linear algebra� The solution yields
the values of the basis function coe�cients� complet�
ing the de�ntion of the blending or �lling surface�

The following four examples show this technique
in practice� The �rst example �lls a circular hole in

�Dataset courtesy LNT� Universit�at Erlangen�N�urnberg


Figure �� Blending and �lling a �ve�sided hole� Left�
the original triangulation extended with three blend�
ing triangulations� Right� the completed triangula�
tion of the �ve�sided hole with knot clouds�

a truncated cone� In the second example� we con�
struct blends and �lls for a �ve�sided region� Two
pipes are blended to form a �tee� joint in the third
example� The �nal example creates a blend between
three in�coming pipes and the bottom of a �at basin�
In �gures where Gaussian curvature is plotted� the
colour green indicates zero curvature� blue increas�
ingly positive curvature� and red increasingly negat�
ive curvature��

��� Truncated Cone

The �rst example smoothly �lls a roughly circular
region of a truncated cone� Figure �� left� shows the
cone surface in yellow� and the �lling surface in blue�
grey� The boundary polygon given to the algorithm
consists of the edges and vertices corresponding to
the inner rim of the truncated cone� Figure �� right�
shows the Gaussian curvature of the surface� The
curvature plot indicates positive curvature over the
capped area� and zero curvature over the cone sur�
face�

��� Five�Sided Hole

The second example shows the creation of three
blend and one �lling surface in order to smoothly join
three di�erent planar regions� where the �nal hole
to be �lled is �ve�sided� The �lling surface must ex�
hibit more complicated geometry in order to provide
a smooth �ll�

Figure 
�� left� shows the �ve�sided hole� with
three blending surfaces �in green� connecting the dif�
ferent original planar regions� and the �ve�sided hole
�lled with the blue surface� The Gaussian curvature

�Colour �gures appear on the �nal page of this document




Figure �� Tee joint triangulation� Left� the original
triangulation with a non�convex �ll region� Right�
the �nal triangulation�

of the �nal surface is shown in Figure 
�� right�
Here we see that curvature does indeed vary over
the �lling surface� with regions of negative curvature
near the centre� and �atter regions near the upper
surface� Figure � shows the triangulation of the ori�
ginal planar surfaces augmented �rst with the exten�
ded triangulations of the blend surfaces� then with
the extended triangulation of the �lling surface�

��� Tee Joint

In this example� a vertical tube is connected to a
hole in a horizontal tube to form a single surface in
the form of a tee joint� Figure �� left� shows the
two tubes� The horizontal pipe contains an opening
that will be �lled by the blending surface� Figure ��
middle� shows the two tubes with their blending sur�
face in blue� and Figure �� right� plots the Gaussian
curvature over the blend surface�

Figure � shows the opening triangulation along
with the extended triangulation computed by the al�
gorithm� In contrast to the previous examples� the
parametric region underlying the blended surface is
not convex�

��� Pipe Junction

The �nal example illustrates triangulation and
blending over a more complicated non�convex region�
Here� three pipes come together to join to the �at
bottom of a basin� Figure 

� left� shows the view
with each of the three pipes approaching the basin�
Figure 

� right� shows the results of the blending
operation� In the parameter domain� Figure � shows
the starting triangulation and the extended triangu�
lation computed by the algorithm� As in the previ�
ous example� the parametric region being blended is

Figure �� Pipe junction� The original triangulation
and the extended triangulation produced by the al�
gorithm�

not convex�

� Conclusions

We have demonstrated an automatic method for
forming blending surfaces and �lling polygonal holes
using DMS splines� The method starts by extending
the surface de�nitions to the region to be blended
or �lled and then establishes control points for the
extended surface by minimizing a functional of the
blending or �lling surface that represents the amount
of surface curvature� The procedure works for both
convex and non�convex domains�

A number of problems remain for further study�
Methods should be developed to assist the user in
taking world space issues into account when assign�
ing the parametric triangulations� The triangulation
algorithm should be adjusted to take into consider�
ation the locations of preexisting knot clouds when
new vertices are introduced� Finally� the use of more
sophisticated fairing functions� such as the Laplace�
Beltrami functional� should be addressed�
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Figure �� Forming a tee joint between two tubes� Left� the original surfaces� The horizontal tube is open
to allow for the connection of the blend surface� The surfaces" control points appear as small yellow cubes�
Middle� the completed blend �in blue�� Right� Gaussian curvature on the blend surface�

Figure �� Capping a truncated cone using the linear�
ized thin�plate energy functional� Left� a cone�shape
surface �yellow� is smoothly capped with a �lling sur�
face �blue�grey�� Right� plot of Gaussian curvature
of the capped cone�

Figure 
�� Left� three planar regions �pink� have
been successively joined using three blend surfaces
�green� and one �ll �blue�� Right� plot of Gaussian
curvature of the surface� The �lled �ve�sided hole
exhibits predominantly negative curvature�

Figure 

� Three pipes meeting at a junction� Left�
the tubes and the basin bottom� Right� the blended
surface� This examples illustrates that very complic�
ated �lls can be computed using this approach�


