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Abstract
Triangular B-splines lend themselves naturally to
problems such as blending and the filling of poly-
gonal holes. Here we present an automatic method
for smoothly blending piecewise polynomial surfaces
using triangular B-splines.
The method proceeds in two phases. In the first
phase, the domain of the region to be blended or
filled is triangulated and populated with basis func-
tions. In the second phase, coefficients for these basis
functions are found by minimizing a functional that
measures the curvature of the blending or filling sur-
face.
Examples are provided that show the use of this
method for a number of blending and filling prob-
lems.
Keywords: Blending, Filling Polygonal Holes, DMS
splines, Triangular B-splines, Surface Smoothing

1 Introduction

Triangular B-splines or DMS splines [DMS92] are a
new tool for the modeling of complex objects with
non-rectangular topology. Since any piecewise poly-
nomial can be represented in the new scheme, DMS
splines offer themselves naturally for problems such
as blending and the filling of polygonal holes. Al-
though this fact has been pointed out before, all
previous solutions have required considerable user-
interaction, and an automatic algorithm for blending
and/or the filling of polygonal holes based on DMS
splines has not been available.

In this paper, we present an automatic method
for solving blending and filling problems using DMS
splines. We presume that the surfaces that are to be
blended or filled are already expressed in DMS form,
with appropriate domain triangulations. There is no
restriction, since every piecewise polynomial can be
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represented as a DMS spline [Sei91]. The method
proceeds in two phases. In the first phase, the
triangulation of the domain of the existing surface
or surfaces is extended to encompass the region of
the domain corresponding to the intended blend or
fill. Vertices for the extended triangulation are then
found with the help of techniques from the finite-
elements literature. New vertices are successively ad-
ded and the Delaunay triangulation of those points
formed. Together with the automatic assignment of
knot clouds, this procedure yields the basis functions
of the new blending or filling surface.

In the second phase, the control points of the new
surface are selected in such a way as to smoothly con-
nect the new surface with preexisting patches and to
minimize surface curvature. The control points are
chosen such that a quadratic functional approximat-
ing the curvature of the surface is minimized. The
minimization problem can thus be expressed as a
system of linear equations and solved by standard
methods.

The paper is organized as follows: Section 2 re-
views the definitions of bivariate DMS splines and
highlights their major attributes. Section 3 shows
how we construct the extended triangulation needed
to form a blending or filling surface. Section 4 de-
scribes the minimization problem used to set the val-
ues of new control points arising from the extended
triangulation. Section 5 summarizes the entire pro-
cedure and gives examples showing the use of this
technique for a number of blending and filling prob-
lems. Finally, we present our conclusions and sug-
gestions for further work in Section 6.

2 Triangular B-Splines

The triangular B-splines of [DMS92] are a flexible ex-
tension of B-spline curves to the surface case. These



surfaces offer properties such as affine invariance and
local control, and exhibit the Convex Hull Property.
Moreover, every degree n piecewise polynomial over
a triangulation T can be represented as a DMS spline
surface.

The following discussion reviews the mathematics
of DMS splines. A broader introduction can be found
in [Sei9l1].

2.1

Simplez splines [Mic79] form the individual basis
functions for the DMS spline surface. A degree n
simplex spline is defined recursively as follows: Let
u and knots tg,...,t, 2 be points in R?, and let
V be the set {to,...,tnt2}. Furthermore, select an
affinely independent set W = {t;,,ti,,ti, } from V.
Then, for n > 0, the degree n simplex spline M (u|V)
is defined as

Simplex Splines

M(u|V) = ZA (u[W)M (u[VA\{t:;}) (1)
where \;(u|W) are the barycentric coordinates of u
with respect to W.

Let d(t;,t;,tx) be twice the signed area of

A(t;, tj,t;). When n =0, we define

X[to,tl,tz)(u) 2)
|d(to,t1,t2)]

where X4+, ,1,) i the characteristic function on the
half-open convexr hull * [ty t1,t2).

M (ulto, t1,t2) =

2.2 DMS Splines

A DMS spline surface [DMS92] is formed by consid-
ering the vertices of a triangulation augmented with
additional points, knot clouds, from which we build a
collection of simplex splines to act as basis functions
for our surface. Let T be an arbitrary proper tri-
angulation of some bounded domain D C R?, with
vertices tg,...,t;. “Proper” means that every pair
of domain triangles are either disjoint, share exactly
one edge, or share exactly one vertex.

A sequence of knots t;9,...,t; called a knot
cloud is assigned to each vertex ¢;, with ;o = ¢;. For
each triangle A(tg,t1,t2) € T, we place the restric-
tion that (to,%1,5,t2,x) must always form a proper
triangle. We then define, for each A, the knot sets

A
Vigr = {to,05- -+, tai} (3)
w is in [to,t1,t2) if we can find a wedge-shaped triangle

1
A (u,u+ (0,8),u+ (¢0)), s,t > 0 that is contained within
the convex hull of {to,t1,t2} [Sei91].
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Figure 1: Issues involved in triangulating a blend
or fill region. Left, specifying which edges to blend
only defines part of the parametric boundary of the
region. Right, using only boundary vertices to ex-
tend a triangulation can yield elongated triangles.

where i + 7 + k£ = n, which yields the simplex splines
M(UWUAI,)

If we let diAjk be d(to,i,t1,5,t2,k), then the
normalized B-splines are defined as N5y (u) =

d%kM( |V”Ak) Each Ngk( u) is a DMS basis func-
tion, and normalization ensures that they sum to
one.

A degree n DMS spline surface F' over triangula-

tion T is then defined as

Z Z mk (u),

A€ET i+j+k=n

cor ERYL(4)

3 Triangulating the Blend or
Hole Region

We begin with the assumption that the surfaces ad-
jacent to the region to be filled and/or blended are
already expressed in triangular B-spline form, with
corresponding domain triangulations. This does not
restrict the class of surfaces to be blended, since
every piecewise polynomial can be represented as a
triangular B-spline. The problem then is to auto-
matically extend these triangulations to the as yet
untriangulated region. The newly triangulated re-
gion should contain triangles that match the scale
of the existing triangles. If the new triangles are of
the same scale as the older triangles, then the corres-
ponding basis functions will exhibit the same degree
of influence on the shape of the final surface. Fur-
thermore, the newly generated triangles must not
be overly elongated, since keeping the new triangles
“fat” prevents numerical problems.

In order to properly extend the neighbouring re-
gions, the newly triangulated region should share



edges, vertices and knot clouds with the given re-
gions along its boundary. We then rely on the math-
ematical properties of triangular B-splines to ensure
maximal parametric continuity between the old sur-
faces and the new blending/filling surface.

In both blending and hole filling problems, the
parametric region to be triangulated must be iden-
tified, most appropriately as a boundary polygon.
This is the natural form of boundary specification
for hole filling problems. A blending problem might,
however, specify only some segments of this bound-
ary (Figure 1). In this case, the procedure must
complete the boundary before triangulation can con-
tinue.

In order to complete the boundary, we join con-
secutive boundary pieces with a new edge. The res-
ulting polygon defines the parametric boundary of
the blend surface. If the length [ of the new edge
is longer than the average length l,,, of the two
edges that it joins, then the new edge is split into
ﬁ shorter edges, by introducing ﬁ — 1 new ver-
tices uniformly into the new edge. This keeps the
lengths of newly introduced edges consistent with
those already given.

Once the boundary polygon is complete, an ex-
tended triangulation could be formed that only uses
vertices from that polygon. Such a triangulation is
more than likely to contain elongated triangles (Fig-
ure 1). Moreover, when individual triangles span
the entire gap, there are very few degrees of free-
dom available for “fairing” the blending/filling sur-
face. Therefore we should introduce new vertices as
appropriate into the parametric region to be trian-
gulated.

3.1 Selection of Vertices

Forming triangulations of given boundary polygons
is common practice in finite-element analysis, where
the physical properties of an object are analyzed
by dividing the object into a number of small ele-
ments [Cav74, JS86, BWST87]. We will use the
technique outlined in [WH94] to build our triangula-
tion. This technique incrementally adds new vertices
while maintaining a Delaunay triangulation [For94].
The Delaunay triangulation maximizes the minimum
internal angle of all triangles and thus discourages
elongated triangles.

Once the domain polygons encompassing the re-
gion to be filled or blended (from now on the region)
are determined, a simple triangulation is formed us-
ing only the vertices of the boundary. A robust

Figure 2: A domain hole is triangulated. On the left,
an initial triangulation using only boundary vertices
is formed. On the right, the final triangulation.

method is given in [SRK94]. This initial triangu-
lation is likely to contain triangles that are quite
elongated. To obtain a better triangulation we must
introduce vertices into the interior of the region and
retriangulate.

An appropriate approach is given in [WH94],
which incrementally chooses new vertices within the
region, and then reforms the Delaunay triangulation.
The key idea of this approach is to assign a scale
to each vertex, which represents the minimum ac-
ceptable distance between a vertex and its nearest
neighbouring vertices. Whenever a new vertex is
considered, a value for this distance is estimated and
used to decide whether or not to use the vertex in
the triangulation.

The initial vertices of the region are assigned
scales that are the average of the lengths of the two
boundary edges to which they belong. During each
iteration, the centroids of the currently existing tri-
angles are examined and possibly added to a list of
candidate vertices. At the end of an iteration step,
these candidate vertices are introduced into the tri-
angulation, and the candidate list is cleared. The
entire process ends when no more candidates can be
introduced (see Figure 2).

The centroid of triangle A is accepted as a can-
didate if it passes the following checks: First, the
centroid is assigned a scale that is the average of the
scales of the vertices of A. The distance from the
centroid to any of these vertices must be less than
this scale, or else the centroid is rejected. If the
distance from the centroid to already accepted can-
didates is also greater than this scale, the centroid is
added as a candidate to the list. At the end of the
iteration step, accepted candidates are added to the
triangulation, and the Delaunay property is reestab-
lished.



do {
find candidates for insertion
for each existing triangle A
compute the centroid ¢; and scale(c;)
for each corner r of A,
verify dist(ci,r) > « scale(c;) and
dist(c;, ) > a scale(r)
if verified, add ¢; to the list of candidates

check that new vertices lie far enough apart
for each candidate c;
for each accepted candidate c;
if dist(ci, ¢;) > 3 scale(c;) and
dist(ci, ¢j) > [ scale(c;)
accept candidate ¢;

put the triangulation back into shape
rebuild triangulation to include accepted candidates
reestablish the triangulation Delaunay property

} until no more accepted candidates

Figure 3: Pseudo-code of the Weatherill/Hassan al-
gorithm for refining a triangulation based on vertex
density criterion.

The above checks can also be modified by mul-
tiplying the distance scale by a variable parameter.
In the first check, a factor o can be used, which af-
fects the density of the triangulation created, while
in the second check, a factor 8 can be used to
vary the regularity of the triangulation (see [WH94]).
Pseudo-code for the algorithm is found in Figure 3.
As a final step, the quality of the new triangulation
can be improved, using other techniques (see for ex-
ample, [Cav74, BWS'87]), in order to promote sym-
metry or other properties that may be desired.

Once the region has been triangulated, the newly
inserted vertices may need to be moved in order to
prevent them from lying collinearly with knots from
preexisting knot clouds. Those vertices which are
collinear have their position perturbed in order to
ensure that the resulting surface will exhibit max-
imal parametric continuity between preexisting sur-
faces and the new surface.

3.2 Defining Knot Clouds

Once the triangulation of the region is complete, the
new vertices must be assigned knot clouds. The as-
signment of knot clouds defines the DMS basis func-
tions for the blending or filling surface. The already
existing knots define, in pairs, lines in the parameter
space which must be avoided in order to maintain
maximal parametric continuity. Knots are placed

Figure 4: Smoothing a polygonal data set using a
fairing functional. Left, the polygonal data. Right,
the smoothed surface.

successively in order to avoid those “forbidden lines,”
in a manner similar to that given in [AGNS91, page
81].

3.3 World Space Relationships

The above triangulation is formed in the parameter
space of the spline surface. We assume that the user
has assigned appropriate parametric triangulations
to the original surfaces before blending?. For ex-
ample, if the surfaces being blended are far apart
in world space, then placing their corresponding tri-
angulations close together in parameter space will
generate long thin patches in the final blend. Like-
wise, if the triangular patches of the surfaces to be
blended are of similar size in world space, then the
user should try to ensure that their triangulations
contain triangles of comparable parametric size. In
short, the user should take into account the world
space relationships of the given surfaces when for-
mulating the blending or filling problem.

4 Fairing by Minimizing a

Functional

Fairing is the process of altering a surface to make it
smoother. Surface fairing usually proceeds by defin-
ing some fairness functional for a given set of sur-
faces, then finding the surface F' that minimizes the
functional with respect to that set. Numerous func-
tionals have been proposed and used successfully for
fairing [MS92, WW92, Gre94a, Gre94b]. Figure 4
shows a polygonal dataset of a face smoothed using

2Since DMS surfaces are affinely invariant, affine trans-
formations of the parameter space do not alter the final
surface.



a fairing function®. If the chosen functional is quad-
ratic then we can reformulate the minimization prob-
lem as a linear system, which can then be solved us-
ing matrix techniques. Furthermore, a unique min-
imum is guaranteed to exist if the bilinear form of
the functional is positive definite for the given set of
basis functions.

The simplest functional that can be used to min-
imize surface curvature is the linearized thin plate en-
ergy functional L(F(z,y)) [Gre94a, Gre94b, CGI1,
HKD93, PS95], defined as

L(F) = / Eall? + 2| Fuy P + || Fyo | derdy. (5)

The action of the functional is restricted to the re-
gion Q, which localizes the corresponding smooth-
ing effect. We use the technique given in [PS95] to
minimize this functional for quadratic DMS splines.
Since we do not extend this technique here, we refer
the reader to [PS95] for further details.

The linearized thin plate energy is a good ap-
proximation to the true energy only if the given
parameterization is close to isometric. In blending
applications this is often the case. In more gen-
eral situations, the linearized thin plate energy has
to be replaced by a quadratic functional based on
the Laplace-Beltrami operator [Gre94b]. Due to the
quadratic nature of this functional, its minimum can
again be found by solving a linear system, as above.

5 Summary and Examples

We now summarize the steps involved in automat-
ically finding a blending or fill surface. First, the
parametric boundary of the blending or filling re-
gion is established, and any additional boundary ver-
tices are created as necessary. An extended trian-
gulation is then formed that shares boundary edges
with the adjacent regions. Next, new vertices are
created within the region and its Delaunay triangu-
lation is formed. Knot clouds are then assigned to
each new vertex, defining the DMS basis functions
for the blending/filling surface. Finally, the minimiz-
ation problem is formed for the new basis functions,
giving a linear system that is solved using standard
techniques from linear algebra. The solution yields
the values of the basis function coefficients, complet-
ing the defintion of the blending or filling surface.

The following four examples show this technique
in practice. The first example fills a circular hole in

3Dataset courtesy LNT, Universitit Erlangen-Niirnberg.

Figure 5: Blending and filling a five-sided hole. Left,
the original triangulation extended with three blend-
ing triangulations. Right, the completed triangula-
tion of the five-sided hole with knot clouds.

a truncated cone. In the second example, we con-
struct blends and fills for a five-sided region. Two
pipes are blended to form a “tee” joint in the third
example. The final example creates a blend between
three in-coming pipes and the bottom of a flat basin.
In figures where Gaussian curvature is plotted, the
colour green indicates zero curvature, blue increas-
ingly positive curvature, and red increasingly negat-
ive curvature®.

5.1 Truncated Cone

The first example smoothly fills a roughly circular
region of a truncated cone. Figure 9, left, shows the
cone surface in yellow, and the filling surface in blue-
grey. The boundary polygon given to the algorithm
consists of the edges and vertices corresponding to
the inner rim of the truncated cone. Figure 9, right,
shows the Gaussian curvature of the surface. The
curvature plot indicates positive curvature over the
capped area, and zero curvature over the cone sur-
face.

5.2 Five-Sided Hole

The second example shows the creation of three
blend and one filling surface in order to smoothly join
three different planar regions, where the final hole
to be filled is five-sided. The filling surface must ex-
hibit more complicated geometry in order to provide
a smooth fill.

Figure 10, left, shows the five-sided hole, with
three blending surfaces (in green) connecting the dif-
ferent original planar regions, and the five-sided hole
filled with the blue surface. The Gaussian curvature

4Colour figures appear on the final page of this document.



Figure 6: Tee joint triangulation: Left, the original
triangulation with a non-convex fill region. Right,
the final triangulation.

of the final surface is shown in Figure 10, right.
Here we see that curvature does indeed vary over
the filling surface, with regions of negative curvature
near the centre, and flatter regions near the upper
surface. Figure 5 shows the triangulation of the ori-
ginal planar surfaces augmented first with the exten-
ded triangulations of the blend surfaces, then with
the extended triangulation of the filling surface.

5.3 Tee Joint

In this example, a vertical tube is connected to a
hole in a horizontal tube to form a single surface in
the form of a tee joint. Figure 8, left, shows the
two tubes. The horizontal pipe contains an opening
that will be filled by the blending surface. Figure 8,
middle, shows the two tubes with their blending sur-
face in blue, and Figure 8, right, plots the Gaussian
curvature over the blend surface.

Figure 6 shows the opening triangulation along
with the extended triangulation computed by the al-
gorithm. In contrast to the previous examples, the
parametric region underlying the blended surface is
not convex.

5.4 Pipe Junction

The final example illustrates triangulation and
blending over a more complicated non-convex region.
Here, three pipes come together to join to the flat
bottom of a basin. Figure 11, left, shows the view
with each of the three pipes approaching the basin.
Figure 11, right, shows the results of the blending
operation. In the parameter domain, Figure 7 shows
the starting triangulation and the extended triangu-
lation computed by the algorithm. As in the previ-
ous example, the parametric region being blended is

Figure 7: Pipe junction: The original triangulation
and the extended triangulation produced by the al-
gorithm.

not convex.

6 Conclusions

We have demonstrated an automatic method for
forming blending surfaces and filling polygonal holes
using DMS splines. The method starts by extending
the surface definitions to the region to be blended
or filled and then establishes control points for the
extended surface by minimizing a functional of the
blending or filling surface that represents the amount
of surface curvature. The procedure works for both
convex and non-convex domains.

A number of problems remain for further study.
Methods should be developed to assist the user in
taking world space issues into account when assign-
ing the parametric triangulations. The triangulation
algorithm should be adjusted to take into consider-
ation the locations of preexisting knot clouds when
new vertices are introduced. Finally, the use of more
sophisticated fairing functions, such as the Laplace-
Beltrami functional, should be addressed.
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Figure 8: Forming a tee joint between two tubes. Left, the original surfaces. The horizontal tube is open
to allow for the connection of the blend surface. The surfaces’ control points appear as small yellow cubes.
Middle, the completed blend (in blue). Right, Gaussian curvature on the blend surface.

Figure 9: Capping a truncated cone using the linear-
ized thin-plate energy functional. Left, a cone-shape
surface (yellow) is smoothly capped with a filling sur-
face (blue-grey). Right, plot of Gaussian curvature
of the capped cone.

Figure 10: Left, three planar regions (pink) have
been successively joined using three blend surfaces
(green) and one fill (blue). Right, plot of Gaussian
curvature of the surface. The filled five-sided hole
exhibits predominantly negative curvature.

Figure 11: Three pipes meeting at a junction. Left,
the tubes and the basin bottom. Right, the blended
surface. This examples illustrates that very complic-
ated fills can be computed using this approach.



