
FaST Sliders: Integrating Marking Menus and the
Adjustment of Continuous Values

Michael McGuffin2, Nicolas Burtnyk2, and Gordon Kurtenbach1,2

1 Alias|wavefront

210 King Street East

Toronto, Ontario
Canada M5A 1J7

2 Dept. of Computer Science
University of Toronto

Toronto, Ontario
Canada M5S 3G4

mjmcguff@cs.toronto.edu, n.burtnyk@toronto.edu, gordo@aw.sgi.com

Abstract

We propose a technique, called FaST Sliders, for
selecting and adjusting continuous values using a fast,
transient interaction much like pop-up menus. FaST
Sliders combine marking menus and graphical sliders in
a design that allows operation with quick ballistic
movements for selection and coarse adjustment.
Furthermore, additional controls can be displayed
within the same interaction, for fine adjustments or
other functions. We describe the design of FaST Sliders
and a user study comparing FaST Sliders to other
transient techniques. The results of our user study
indicate that FaST Sliders hold potential. We observed
that users found FaST Slider easy to learn and made use
of and preferred its affordances for ballistic movement
and additional controls. A sample program
demonstrating our technique can be downloaded at
http://www.dgp.toronto.edu/~mjmcguff/research/FaSTSlider/

Keywords: marking menus, control menus, flowmenus,
gestures, sliders, fast slider, interaction design

Introduction
The adjustment of continuous values is a common
transaction in many computer applications. Adjustment
generally involves the setting of a value within a range
of values with a certain degree of precision. For
example, many GUI desktops use a graphical slider to
control the computer’s audio output level.

Many applications allow users to adjust numerous
continuous values. Audio mixing applications, like
physical audio mixing consoles, present users with a
myriad of adjustable continuous values. Other
applications with similar rich functionality like 3D
modeling and animation applications may also make
heavy use of continuous values (Figure 1).

Figure 1: Examples of 3D scenes containing objects
where each object has many associated parameters.
The top screen shot, of a UI for controlling facial
expressions, shows how the sliders consume screen
space if they are all displayed simultaneously. In the
bottom sequence, a user invokes a marking menu over a
duck object to select and adjust one of its parameters.
The slider that appears can be dismissed after the
adjustment is complete.

A popular approach to representing adjustable
continuous values is the common graphical slider.
Typically a graphical slider is presented to a user in a
window, perhaps grouped with other related sliders.
This arrangement can work well since it allows a user
to see the relative settings of values and adjust them
directly by dragging a slider’s “wiper” with the cursor.

However, there are many situations in which it is not
important to see the relative settings of sliders side-by-
side. In these cases, a significant drawback of
displaying multiple sliders at once is the consumption
of screen space. As the top image in figure 1 shows,
this can become an acute problem as the number of
adjustable values grows. Another potential drawback of
displaying multiple sliders grouped in a window can be
the dissociation between sliders and the objects they
control. While there has been much work on designing
space saving small widgets to adjust values [3][7],
another avenue of exploration is to make slider
interaction transient to save space, as suggested by the
bottom sequence in figure 1.

In addition to trying to save screen space, we are also
interested in basing our transient slider design on some
of the successful properties of marking menus [8]. Over
the past six years we have gained extensive experience
in deploying and using marking menus in commercial
software made by Alias|wavefront. We have found that
marking menus’ property of “scale independence”—
interpreting marks based on their shape and not their
size—allows users to select very quickly and casually,
and has become extremely popular with expert users.

For example, some experts are so proficient with
marking menus that they can perform an entire product
demonstration without displaying a single menu. Thus
our goal is to design a transient slider interaction
technique that allows fast and casual operation
consistent with marking menus.

The interaction technique we propose is a combination
of marking menus and graphical sliders. Other
interaction techniques have proposed similar
combinations of radial menu techniques and dragging
to control values [9][10][5]. These techniques use a
single drag to perform both the selection of a value and
its adjustment. Our technique differs in that we use two
distinct drags to perform value selection and value
adjustment. This decoupling produces some important
differences in the resulting interaction.

In this paper we describe the design of our technique,
the design principles it is based on, how it compares
with other similar techniques, and users’ reactions to
the technique relative to other techniques. We conclude
with a discussion of the overall merits of the technique.

FaST Sliders
We call our technique FaST Sliders, which stands for
“Flick and Slide or Tweak”. Our technique has three
distinct steps: the first step (“Flick”) is the selection of
the value to be adjusted and the second step (“Slide”) is
the actual adjustment of the value. The third step
(“Tweak”) is optional and allows for additional kinds of
adjustments of the value. The technique is a

Figure 2: FaST Slider interaction 1) The user does a drag-release using either a menu or a quick “flick”
gesture. This displays a slider. 2) With the mouse button released the entire slider follows the cursor. 3) When
the mouse button is pressed the slider is “glued” to the screen. 4) Dragging adjusts the wiper (releasing at
this point would dismiss the slider). 5) Dragging perpendicular to the slider posts the slider and some
additional controls 6) these controls can then be used. Clicking on “Done” completes the interaction.

combination of a marking menu and a one-dimensional
graphical slider (Figure 2). It works as follows:

Flick Step – Selection of a value The user pops up a
marking menu by holding down a mouse button. This
menu contains menu-items which represent adjustable
values. Like a regular marking menu, an item can be
selected by moving into the radial area for the menu
item to highlight it and releasing the mouse button. The
menu is then popped down. Since the menu is a
marking menu, selection can also be accomplished
quickly without displaying the menu by performing a
“flicking” drag movement.

Slide Step – Adjustment of the value Once selection is
complete the system goes into “follow-mode”. In this
mode, a slider appears with its wiper directly under the
cursor. If the cursor is moved, the entire slider follows
the cursor, keeping the wiper located directly under the
cursor. To adjust the slider value, the user presses down
the mouse button and this “glues” the slider to the
screen, allowing the user to drag the wiper to adjust the
value. This drag is called “adjust-mode”. When the
mouse button is released the slider disappears and the
interaction is complete.

Tweak Step – Additional controls If the mouse button is
not released in adjust-mode, and the user drags the
cursor off of the wiper by moving it perpendicular to
the sliders’ trough, this results in additional controls
appearing (Figure 2.5). If the user releases the mouse
button in this state (outside of the wiper), the wiper and
additional controls stay posted. Now the user is free to
move over and activate any of these controls as many
times as needed. Once the user is satisfied with the
adjustment they can dismiss the slider and the controls
by clicking on the “Done” button. This ends the
interaction.

Discussion of Design
In the design of FaST Sliders we have attempted to
support several design properties. The first principle is
to allow and exploit ballistic cursor motion. Ballistic
motion is based on the concept of a motor program in
motor control studies. A motor program is “a set of
muscle movements structured before a movement
begins, which allows the entire sequence to be carried
out uninfluenced by peripheral feedback” [6].
Ultimately we want our technique to allow for ballistic
movement and therefore require a minimum amount of
user attention to system feedback.

Ballistic movement is supported in several ways. First,
since we use a mouse up event to signal the selection
step of the interaction, this is compatible with marking
menus’ “scale independence” property. Because of this,

users can make marks of arbitrary size to select menu-
items thus making selection fast and casual, generally a
“flicking” ballistic movement. Second, because the
entire slider follows the cursor after this ballistic flick, a
user does not need to move the cursor over the wiper
before starting to drag/adjust the value. This is
especially important when ballistic mouse movements
cause the cursor to move far away from the point where
the mouse button was released. Essentially this design
allows a user to “flick and slide”--using two very fast
and casual mouse drags to display, select, adjust, and
undisplay adjustable values.

Another important design property is what we call
“distinct engagement”—that is, a distinct user gesture
(mouse down) is used to engage the actual adjustment
of the slider. We believe this may be an improvement
over other techniques that use the less explicit event of
dragging past some activation threshold (for example,
past the outer edge of the radial menu). This property
produces a subtle but important effect. Imagine a user is
making an audio recording and wants to adjust a
recording level slider. It is critical in this case that the
slider be moved gently either up or down so that no
“spikes” or “dips” occur in the recorded material. If an
activition threshold is used, the user must be very
attentive as to when they cross the threshold and once
they cross the threshold their movement must be very
controlled. Note that the difficultly of this situation
increases as the user increases the speed of their initial
selection movement. Thus this approach does not bode
well with our goal of fast and casual movement.

However, the use of an explicit user trigger event
eliminates this interference between selection and
adjustment. Once a user releases the mouse button
following a selection, they enter an interim mode
(follow-mode) where they have a chance to stabilize
their movements before engaging the adjustment of
slider. This allows a quick ballastic selection movement
followed by a controlled adjustment movement. One
additional benefit of following-mode is that it also
allows the user to reposition the cursor or input device
before beginning to adjust the slider. This can be used
to move into a more comfortable position or to position
the slider away from or close to a particular part of the
display.

Another important design principle is to allow in the
design the incorporation of additional methods for
modifying a value. For example, many applications
have graphical sliders which, in addition to having a
wiper for adjustment by dragging, may also have
increment/decrement controls, numeric entry, default
values, etc. Ultimately, a slider control could be a
dialog box with a variety of common GUI controls.

Given this requirement, we allow additional controls to
be accessed through the tweak step. It is important to
note that once the user has dragged out of the wiper, the
additional controls are posted and the mouse button can
be released. This essentially leaves the user free to
move to and click on any of these additional controls.
Thus, in addition to the controls shown in our example
of FaST Slider in Figure 2.5, any sort of dialog element
could be available. Essentially, each invocation of a
FaST Slider is capable of evolving into interaction with
a full blown dialog box. Conceptually, this works out
nicely since a UI designer has the option of
encapsulating all of the controls associated with a value
into a single “interaction location” in a user interface.

Comparison with Other Techniques
Two other interaction techniques that are similar to
FaST Sliders have been proposed in previous work.
Perhaps the most similar are Control Menus [9].
Control Menus, like FaST Sliders, use a marking menu
to select the value to adjust. However, rather than using
a mouse up event to signal the end of the selection step,
Control Menus enter adjustment mode the moment the
cursor is dragged beyond a fixed threshold distance
from the center of the menu. Figure 3 shows an
example of a Control Menu. As described earlier, we
believe this approach can make ballistic motion
difficult and carefully controlled engagement of
adjustment difficult. However, this cost comes at the
benefit of being able to perform the entire interaction in
a single drag. Our user testing section discusses users’
reactions to this cost/benefit trade-off.

Figure 3: Using a Control Menus. 1) the user drags to
select a value to adjust. When they drag past the edge
of the menu, the selected slider is displayed. 2)
Continuing to drag immediately adjusts the slider.

Another difference between FaST Sliders and Control
Menus is that, with the latter, dragging is the only
means available to adjust a value. FaST Sliders provide
a method to escape dragging adjustment and access
additional controls via its tweak-step. However, this
benefit comes at the cost of limiting our current design
of FaST Slider to only adjusting one-dimensional
values. For example, Control Menus easily support
two-dimensional panning, while dragging in the second
dimension of a FaST Slider is used to post additional
controls.

FlowMenus [4] are another radial menu based
technique that is comparable to FaST Slider.
FlowMenus, like FaST Sliders, are capable of
supporting value selection, adjustment, and other
controls. However, the interaction style to support this
functionality has some significant differences. First,
while FlowMenus use a radial menu layout like
marking menus, item selection is performed by
dragging into an item then back to the center of the
menu. This “return to center” design allows a user to
navigate through a hierarchy of menus without moving
all over the screen. Second, continuous adjustment is
supported by a special menu item, which affords
adjustment by circular motion (Figure 4). Finally, like
Control Menus, FlowMenus afford selection,
adjustment, and other controls in a single drag.

 1) 2) 3)

Figure 4: Example of using a FlowMenu to adjust a
value. 1) a value is selected by dragging in and out of
an item. This causes the display of a submenu with
adjustment controls shown in 2) Moving into the dial
menu item causes the display of a “rotary dial” shown
in 3) where rotation adjusts the slider.

User Testing
To get a better understanding of the advantages and
disadvantages of our FaST Slider design, we performed
informal user tests. Specifically, we were interested in
what effect the major design differences between FaST
Sliders, Control Menus, and FlowMenus would have on
users’ impressions and performance with these
techniques. Our intention was to use this information to
further refine the FaST Slider design.

We implemented the three techniques such that each
one could be used to adjust eight continuous parameters
in a test program. The parameters ranged in value from
0 to 300. Since the study focused on adjustment of
parameters rather than their selection, we used non-
hierarchical menus for the Control Menu and the FaST
Sliders (Figures 2 and 3). Similarly, the FlowMenu
only had one menu level to select a parameter, followed
by an additional level containing adjustment controls
(Figure 4).

For all three techniques we attempted to provide the
same level of functionality within the limits of the
technique. For example, while fine-tuning functions
could be provided in FaST Slider and FlowMenus,
Control Menus have no obvious way of supporting
these additional functions. Furthermore, FlowMenus as
described in [4] have many additional ways to adjust a
value. To be fair, we designed our own FlowMenu
layout, which we thought would be effective but with
functionality equivalent to the FaST Slider.

We tested 12 users, all of whom were familiar with
Marking Menus. Most of them had 2-8 years of
experience using complex 3D modeling software such
as Alias|wavefront’s Studio or Maya, and some were
heavy users of Marking Menus, hotkeys, and other
techniques for fast interaction.

To avoid confounding variables, no feedback was
shown to the user other than that which the adjustment
techniques provided; i.e., except for when a technique
was engaged, the screen was blank. The tester
controlled which technique was currently available to
the user. A mouse was used for input, and the screen
was 19” with a resolution of 1024x768.

Initially, users were told that each of the techniques
would first present them with a menu for selecting one
of eight parameters, and then allow them to adjust the
selected parameter in some fashion. We then asked
each user to try out and explore the techniques on their
own, while talking aloud, to see if they could learn how
to use them. The order of presentation of the
techniques was permuted for each user. After about
five minutes of exploration, if the user had still not
completely understood the techniques, the tester
explained how they work. (Note, however, that once
this explanation was given, no further assistance or
coaching was given during the tasks to follow.)

After the exploratory phase, the user was asked to
perform a set of tasks using each of the techniques. The
first task was inspection, where the user had to find out
the current values of some of the parameters without
changing them. The second was extremal assignment,
where the user had to quickly set the parameters to their

minimal or maximal value. The third was rough
assignment, where the user had to assign a mid-way
value of roughly 150 (± 10) to the parameters. Fourth
was exact assignment, where the user was asked to
assign a given value to various parameters. The fifth
task was fine-adjustment, where the user was asked to
increase or decrease a given parameter by 1 or 2 units.

Test Observations
Control Menus and FaST Slider were easy to learn.
FlowMenu was more difficult.

We observed in the exploratory phase that all the users
were able to learn how to roughly operate both the
Control Menus and FaST Slider without coaching,
although Control Menus’ undo feature was only
discovered by one user and went unnoticed by the
others. The FlowMenu, on the other hand, generally
required coaching. For example, one user commented
that it “wasn’t intuitive at all”. Users seemed to be
especially confused by the dial menu item, because,
first, selection of all other items in the FlowMenu
requires users to move out to the item and then back to
the center, whereas dialing requires moving out and
around, and, second, nothing in the FlowMenu’s shape
or feedback suggests rotary movement to the users.

This created many problems using the FlowMenu. For
example, two users, intending to increment a value,
moved over the increment menu item and released
instead of moving back to the center to complete the
selection. Even after users were given an explanation
of how to operate the menu, mistakes were made. Some
users often started to dial in the wrong direction and
had to correct their motion. One user performed dialing
not in the intended way, but by leaving the menu center
in an arbitrary direction and traveling around until they
accidentally hit the dial menu item. The user did this
many times without noticing that anything was wrong.

Inspection and Fine-tuning were very difficult with
Control Menus

The Control Menu was found to be almost impossible
to use for inspection, since the user modified the
parameter as soon as they traveled more than one pixel
beyond the gray threshold circle. One user commented
“that really bugs me […] to me that makes this
[technique] unusable”. However, two users discovered
that by performing undo, they could successfully
inspect values with the Control Menu without having to
gingerly “just cross” the threshold circle. The Control
Menu was also difficult to use for fine-adjustment, for
similar reasons.

In terms of the other techniques, the FlowMenu easily
supported inspection and fine-adjustment. The FaST
Slider also allowed fast inspection, as the user only had
to “flick” to go into “follow-mode” and see the value.
The FaST Slider could then be dismissed simply by
click-releasing over the wiper. Unfortunately, the
mouse often moved one or two pixels between the click
and release, causing the value to change. For fine-
adjustment and exact assignment, a similar problem
occurred if the user moved off of the wiper to post the
additional controls for fine adjustment: as the cursor
moved off, it slightly nudged the wiper up or down by
an unintended amount. However, we believe simple
modifications could correct this problem.

We observed a similar problem with the FlowMenu.
Our implementation of FlowMenu allows the user to
release immediately after dialing a new value.
However, users sometimes tried to return to the center
of the menu after dialing, presumably because they
either assumed it was necessary (since all the other
menu items require a return to center) or because they
wanted to access the fine-tuning menu items.
Unfortunately, because the return trajectory did not
follow an exactly straight, radial line, the value was
inadvertently changed along the way. It is not clear
how to correct this problem, other than to avoid
returning to the centre after dialing.

Users often ran out of screen space using the Control
Menu.

Because Control Menus’ slider is not movable once
popped up, users often started their interaction close to
the screen edge and ran out of screen space to complete
a adjustment. To recover from this required re-invoking
the menu at a different location. Note this is not a
problem with FaST Slider, since the follow-mode
allows a user to relocate the slider to a better screen
location before adjusting. Many users commented
positively about this feature, stating how they could use
it to their advantage, for example, not only to avoid
running out of screen space but to locate the slider as to
not obscure their work.

In terms of rough and extremal assignment, apart from
Control Menu’s problem with screen space, all the
techniques performed well.

Other observations

When asked which method they preferred, five chose
the FaST Sliders, four users chose the FlowMenu, two
were tied between these two techniques, and only one
user preferred the Control Menu.

The users who preferred the FlowMenu stated that they
enjoyed the challenge of learning how to use it. They

described it as “cool”, “smart” and “nice”. Two users
explicitly stated that they preferred it because it was
“different”. On the other hand, those who didn’t prefer
the FlowMenu described the circular dialing motion as
a “little weird” or “unnatural”, or that it “seems like a
lot of extra work”.

Users who preferred FaST Sliders reported they liked
the ability to release and tweak, saying that FaST
Sliders were the “safest” and “most stable” of the
techniques, or that they were “familiar […] like a popup
menu”.

The sole user who preferred the Control Menu reported
that it required the least work to adjust values.

Finally, one user was observed to make many selection
errors with the Control Menu. For example, when the
user wanted to quickly select a lower menu item and
increase the corresponding parameter, he would stroke
down in the appropriate direction (but not far enough)
and then stroke up, unwittingly selecting and adjusting
the parameter for an upper menu item. This lends
support for our belief that scale-invariant interpretation
of Marking Menu strokes is important.

Discussion & Conclusions
Our user study gives evidence to the effectiveness of
some of our original design principles. In terms of
ballistic motion and distinct engagement, we believe
that part of the success of FaST Slider is due to careful
attention to these design aspects. Evidence for this is
given by the problems observed when using Control
Menus to perform inspect and fine adjustment. An
additional benefit of designing for ballistic motion is
the “follow-mode” design feature in FaST Slider. Not
only did this allow users to inspect values safely, but
also allowed for repositioning of the slider to the user’s
advantage. In our study, users repositioned the slider to
avoid running out of screen space to complete a drag.
Users also acknowledged the potential usefulness of
repositioning the slider to avoid obscuring their work,
e.g. a 3D model, or to place it relative to objects in a
scene, e.g. using it as a ruler.

Our other design principle of supporting additional
controls proved effective. The additional controls
present in FaST Slider and the FlowMenu were used in
our study, and the lack of these proved to be a weakness
for Control Menu. Furthermore, by allowing users to
post the additional controls of the FaST Slider, we open
the design to potentially support the complete range of
standard controls available in a dialog box. In contrast,
it is not clear how to integrate standard controls in the
FlowMenu’s design. Furthermore, it is important to
note that because FaST Sliders can be posted, our

design could allow for multiple sliders to be displayed
simultaneously, behaving as modeless dialog boxes.

Despite FlowMenus and FaST Sliders scoring very
closely in terms of preference in our user study, we
believe a UI designer may prefer FaST Sliders since
FlowMenus are a much more unconventional style of
interaction and therefore require additional user
learning and may not appear to be consistent with other
standard GUI techniques.

Future Work
Our current design of FaST Slider deals only with one-
dimensional dragging. Extending the technique to two-
dimensional adjustment, while still retaining the tweak
step, is still an unsolved problem.

Based on some user’s preference for the circular
dragging in FlowMenus, replacing FaST Slider’s linear
slider with a rotary slider is an interesting future
research topic. One useful property of rotary
adjustment is that users can continuously control the
C:D ratio by varying the radial distance of the cursor to
the dial’s center. Furthermore, rotary motion naturally
lends itself to relative adjustment.

While the focus of this paper has been on the control of
numerical values, future research could be done to
adapt FaST Slider to adjust non-numerical data using
techniques such as the AlphaSlider [1].

Although our design does not adhere to the concept of
physical tension proposed in [2], requiring more than
one drag for an interaction phrase did not seem to cause
a problem. We believe this is due to the “follow-mode”
providing sufficient visual feedback to keep users
aware of the current state. It may be that this type of
feedback (the entire slider following the cursor)
provides a kind of “visual tension” analogous to
physical tension. The issue of physical versus visual
tension in user interface design bears further
investigation.

Our work has not compared the relative speed of
operation of each technique. Because FaST Sliders
require at least two drags for an interaction, a naïve
keystroke model analysis suggests that our design
should be slower compared to the other techniques.
However, we suspect that the improved support for
ballistic motion designed into FaST Sliders may more
than offset the penalty incurred by an extra button
press. A formal study is required to test this hypothesis,
and could contribute to a deeper understanding of the
role of gesture design in supporting high quality
interaction.

Acknowledgements
We thank George Fitzmaurice, Ravin Balakrishnan,
Azam Khan, and Scott Guy for design comments and
suggestions. We also thank the participants in our user
study.

References
1. Ahlberg, C., and Shneiderman, B., (1994) The

Alphaslider: A Compact and Rapid Selector.
Proceedings of CHI '94, ACM Press, 365-371

2. Buxton, W. (1986). Chunking and phrasing and
the design of human-computer dialogues. In
Kugler, H. J. (Ed.) Information Processing '86,
Proceedings of the IFIP 10th World Computer
Congress, 475-480, Amsterdam: North Holland
Publishers.

3. Buxton, W., Reeves, W., Fedorkow, G., Smith, K.
C., & Baecker, R. (1980). A Microcomputer-Based
Conducting System. Computer Music Journal 4(1),
8-21.

4. Guimbretiere, F. & Winograd, T. (2000)
FlowMenu: Combining Command, Text, and Data
Entry. Proceedings of UIST 2000, ACM, 213-216

5. Hopkins, D. (1991) The design and
implementation of pie menus. Dr. Dobb’s Journal,
16(12), 16-26.

6. Keele, S. W. (1968) Movement control in skilled
motor performance, Psychological Bulletin, 70,
387-403.

7. Kurtenbach, G. (1988) Hierarchical Encapsulation
and Connection in a Graphical User Interface: a
Music Case Study, MSc thesis, University of
Toronto

8. Kurtenbach, G. & Buxton, W. (1993) The limits of
expert performance using hierarchical marking
menus. Proceedings of the CHI ‘93 Conference on
Human Factors in Computing Systems, New York:
ACM., pp. 482-487

9. Pook, S., Lecolinet, E., Vaysseix, G., and Barillot,
E. (2000) Control Menus: Execution and Control in
a Single Interactor. CHI 2000 Extended Abstracts,
ACM, pp. 263-264.

10. Reinhardt, A. (1991). First Impression: Momenta
Point to the Future. Byte Magazine.

