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Abstract
Motion capture (MOCAP) data clips can be visualized
as a sequence of densely spaced curves, defining the joint
angles of the articulated figure, over a specified period
of time. Current research has focussed on frequency and
time domain techniques to edit these curves, preserving
the original qualities of the motion yet making it reusable
in different spatio-temporal situations. We refine Guo
et. al.’s[6] framespace interpolation algorithm which ab-
stracts motion sequences as 1D signals, and interpolates
between them to create higher dimension signals. Our
method is more suitable for (though not limited to) edit-
ing densely spaced MOCAP data, than the existing algo-
rithm. It achieves consistent motion transition through
motion-state based dynamic warping of framespaces and
automatic transition timing via framespace frequency in-
terpolation.

Key words: motion editing, framespace interpolation,
blending, concatenation, motion correspondence.

1 Introduction

With increasing availability of motion capture devices
and high fidelity motion requirements in the entertain-
ment industry, realistic animation has become possi-
ble without need for dynamic simulation or laboriously
crafted keyframed data. However, motion reuse is as rel-
evant as captured motion data, since it is not always fea-
sible to retake motions or record transitions between two
desired motions. Simple basis motions are created and
then interpolated or extrapolated through various tech-
niques, to yield a large variety of motions. Motion edit-
ing broadly encompasses reshaping, blending, concate-
nation and retargetting of basis motions. In this paper,
we deal with consistent blending and concatenation, both
of which are referred to as motion transition problems by
several authors[3, 12].
Interactivity in motion editing research has been as-

signed paramount importance, since it is necessary to
avoid clogging up the animators’ workflow through un-
desirably long waits between edits. Ease of editing spec-
ification is also very important and requires minimiz-

ing the number of control parameters. Framespace in-
terpolation is a time domain motion-transition technique
which allows such interactivity through minimal user-
specification and simple computation needs. Guo and
Roberge[6] use parametric framespace interpolation for
transitions between human running and walking, where
inter-motion correspondences are developed between key
states of the lower half of the body. We reformulate their
framespace interpolation technique, specifically keeping
motion editing of densely spaced signals in mind, while
establishing motion correspondences. The rest of this pa-
per has been organized as follows: a survey of motion
editing techniques, an analysis of the existing framespace
interpolation algorithm, consistent framespace interpola-
tion via dynamic time warping, results and analysis, and
a summary of contributions.

2 Survey of Motion Editing Techniques

Most researchers[3, 5, 6, 16] have treated motion data as
a ‘blackbox’ set of 2D �� continuous signals, without
differentiating the degrees of freedom (DOF) in terms of
relevance to the motion, or hierarchy of structure. Bindi-
ganavale and Badler[2] introduced some heuristics based
on end-effector acceleration zero-crossings, to isolate sig-
nificant events and abstract constraints from an agent’s
action. This approach cuts down unnecessary constraint
checks, hence saving valuable computation. We build on
this motion abstraction paradigm and achieve significant
savings in pre-blend/pre-concatenation motion-warping.

Motion editing in frequency domain has been proposed
by a few researchers. Bruderlin’s[3] application of Gaus-
sian and Laplacian pyramids to motion data, provides a
way to transform motion by adjusting the gains of the
different bands, before reconstruction. Unuma et. al.[14]
proposed a Fourier transform of discrete motion signals.
From a given set of Fourier coefficients for two motion
clips, they achieve interpolation, extrapolation and tran-
sition between these motions, by linearly varying the in-
terpolant weights of the Fourier coefficients and phase an-
gles. Though these methods drastically reduce the num-
ber of control parameters, a domain transform makes



control less intituitive as a priori knowledge is needed
about which frequencies contain the essential motion-
characteristics.
Several time domain motion editing techniques have

evolved. Guo and Roberge[6, 7] proposed a paramet-
ric framespace interpolation paradigm for motion blend-
ing and concatenation. By employing a user-specified
curve to interpolate entire sequences of articulated fig-
ures, animator-effort is minimized. Rose et. al.[11] em-
ploy radial basis functions to interpolate and extrapolate
actions. Bruderlin[3] used displacement mapping, as a
means of editing densely spaced motion curves. The
method involves specifying a smooth curve, through a
few keyframes (constraints), and adding it to the origi-
nal curve. This way, the original motion characteristics
are preserved, yet achieving a change in the motion via
a low frequency offset curve. Luo[9] and Gleicher[5]
use displacement curves as a constraint specification tool.
Witkin[16] uses a similar concept in the form of motion
warping.
Witkin and Kass[15] introduced motion synthesis as

a constraint optimization problem, where given a set of
constraints, the problem is to find a valid motion that
best satisfies the goal. Cohen[4] proposed a more in-
teractive system, where the solution is guided by the
user. Gleicher[5] simplified the formulation for inter-
active performance, by using Sequential Quadratic Pro-
gramming (SQP) techniques. SQP solvers perform effi-
ciently because they accept quadratic optimization met-
rics and only linear constraints. Motion retargetting[5, 8]
and concatenation[12] can be viewed as spacetime prob-
lems, in that given a length of motion, the problem is to
find the best motion which satisfies the constraints and
maximizes the goal. Unlike pure IK based re-positioning,
the spacetime approach ensures that the constraints affect
neighboring frames as well.

3 Analysis of Existing Framespace Algorithm

3.1 Interpolation Algorithm
In simple terms, framespace interpolation is a way of
specifying postural blends via an input curve (inter-
polant), drawn within frameswhich enclose a rectangular
area or a cubic volume. Basis motions (primitives) which
are to be interpolated, are each represented by one such
frame. Mapping the entire clip of an animated figure with
normalized times, on to this frame yields a 1D frames-
pace. In Eqn.(1)� dimensional point, �, represents the
body posture at a given time instant. Eqn.(2) represents
the motion curve of DOF� as an interpolation function
(�����) of a time-sequence of �� points. � ��� abstracts
the � motion curves as a 1D framespace, parameterized
by arc length �.

� � ���� ��� � � � � ���
� (1)

� ��� � ������� ������ � � � � ������
�
� � � � � � (2)

Combining ���� such framespaces, interpolation can be
done in n dimensional framespace. As a practical inter-
polation tool, 2D and 3D framespaces are adequate, since
user-interaction in higher dimensional interpolation of
1D framespaces has no direct visual mapping. Eqns.(3)
& (4) express 2D and 3D linear parametric interpolation,
where � (time), 	 and 
 (weights) are cartesian coordi-
nates of points, � ��� 	� 
�, of the interpolant. ��������

are parametric 1D framespaces, which represent the basis
motions.
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Bruderlin[3] points out that arbitrary interpolation be-
tween un-correlated motions could give rise to severe
inconsistencies in the result. Such correlation has not
been established between the primitives in [7]. Guo and
Roberge address this limitation, by implementing con-
sistent 3D framespace interpolation[6]. Two styles of
human walking and running are chosen as primitives
and key locomotion postures are chosen as correspon-
dence points (states). The 3D interpolation space (see
Fig.1) is divided into sub-volumes by event surfaces (
�)
constructed between corresponding states from the four
primitives (�����

�

��
�

��
�

�� in Eqn.(5)) . These surfaces are
non-planar in the general case. Every point on the inter-
polant, � ��� 	� 
�, is first projected (along the time axis)
on all event surfaces to determine whether it lies on a sur-
face. If true, then the four states defining the surface are
used for interpolation (as in Eqn.(5)). Otherwise, if � be-
longs to a sub-volume, �� then its eight bounding states
are used (as in Eqn.(6)).
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Figure 1: Guo and Roberge’s[6] consistent interpolation.

3.2 Drawbacks of Existing Technique
An important difference between Eqns.(3) & (4) and
Eqns.(5) & (6) can be observed. While the domain
of the former set of equations is the entire framespace
(������ ��� � � � ���), the domain of the latter set com-
prises only of the keyframes (������ � � ���

�
� � � � � ����).

Though the coefficients �� are functions of the entire
framespace, it is important to note that these coefficients
are merely used to weigh the values of the bounding
keyframes, and hence, joint angle values of the entire
framespace are not used. Thus the algorithm does not
exploit the high frequency information in the frames-
paces constructed from MOCAP data, since only key
correspondence points are interpolated. This formula-
tion seems more suited to sparsely placed keyframes
rather than dense motion curves, where the premise of
keyframes being equivalent to key events does not hold.
Secondly, a generic framework has not been proposed

for the automatic generation of timing for the resulting
motion. The default time mapping proposed is specifi-
cally related to human locomotion, and does not cater to
general motion transition.
Lastly, the arc length parameterization of the m-D in-

terpolation function in Eqn. (2) overlooks a basic draw-
back. Referencing a point at arc distance � along �����
curves (� � � � �), would yield points at different time
instances ��, and not � as we normally expect in paramet-
ric keyframe animation. This is because the arc-lengths
for the m �� curves at a given time, will be different due
to their characteristic shapes. Besides being an unconven-
tional parameter in keyframe animation, this undesirable
feature makes it tedious to validate postures on the fly.

4 Consistent Framespace Interpolation via Dynamic
Time Warping

We propose a more efficient algorithm which improves
on the above-mentioned drawbacks. A modified frames-
pace interpolation technique is described in this section,
which exploits the entire framespace information and

provides a generic method of default transition-timing
generation. Arc length parameterization is not used for
reasons mentioned in the last section.

4.1 Algorithm Overview
The proposed algorithm hinges on ideas drawn from
Bruderlin’s[3] dynamic time warping and correspon-
dence based on high level events[2, 6, 10]. Instead of pro-
jecting � ��� 	� 
� on event surfaces (Sec.3.1), the irregu-
lar bounding volumes (Fig.1) are regularized by weighted
scaling of inter-state time gaps in the basis motions.
The source frames are then extracted from the regular-
ized framespaces and blended using weights drawn from
� ��� 	� 
�. Further, these weights are used to interpo-
late the frequencies of the primitives, to yield smooth
timing transition in the resulting curves. Weight coeffi-
cients � and � in all equations in these sections, are the
same as in Eqns.(3) & (4). Assigning 	� � 
� � � and
	� � 
� � �, saves on unnecessary division and yields
� � 	 and � � 
. The following sections will explain
the concepts in greater detail. Fig.2 summarizes the algo-
rithm.
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Figure 2: Proposed Consistent Interpolation Framework

4.2 Dynamic Time Warp Preliminaries
Bruderlin[3] uses dynamic time warping to align signals
before performing blending. He uses Sederberg’s[13]
physically based signal correspondence techniques to es-
tablish this time warp. The algorithm solves the corre-
spondence problem by exhaustive graph traversal, where
the vertices represent all possible combinations of inter-
point correspondence between two signals. This is an ex-
pensive O(mn) operation (if the two signals have m and n
samples each). We simplify the correspondence problem
by identifying samples where key events occur, and then
use these as reference points to apply time warps to en-
tire sections of the signal, instead of warping the samples
individually, as in Sederberg’s method. Such a motion-
abstraction assisted warp method is much more econom-
ical than Sederberg’s low level warping algorithm.



4.3 Pre-blend Warping of Primitives

In our problem formulation, motion states are pre-
classified. The system then automatically identifies cor-
responding states, based on a best match between event
labels of analyzed primitives. What needs to be resolved
now is, by how much should each of the primitives be
warped to enable consistent blending. Warping the rest
of the primitives to one primitive leads to inconsistent
results, since the net frequencies of the other primitives
are changed completely. Consider a simple 2D interpo-
lation case of transition from run to walk. If the walk
action is warped to match the run, we have a much faster
walk parametric space, with the run frequency untouched.
When the interpolant meets the walk frame (run has no
effect), the result will be a funny fast shuffle, which is
neither a walk nor a run.
To solve this problem, we propose a regularization

warp function for aligning all primitives. The function
is driven by � ��� 	� 
�, where 	 & 
 provide weights and
� makes the function time-variant (dynamic). Let us ex-
plain this concept in the 2D interpolation case first. A
single cycle of two hypothetical 1D framespaces can be
represented as shown in Fig.3. �� refers to the elapsed
time between successive motion states. Then the problem
of changing the �� between successive states so that all
the framespaces are consistently affected, can be solved
by a weighted interpolation of these curves. This can be
easily generalized to the 3D interpolation case. Eqns.(7)
& (8) define dynamic time warp functions for 2D and 3D
framespaces respectively. ���� represents time elapsed
between states � and � � �, for framespace ��, and 	

& 
 are interpolant weights. �� ���� 	� and �� ���� 	� 
�
represent the new�� values for 2D and 3D interpolation
respectively, which will be applied to all the primitives,
resulting in regular subspaces.

��
���� 	� � ��� ����

�
� � ���

�
� (7)

��
���� 	� 
� � ��� ����� ����

�
� � ���� ����

�
�

���� �����
�
� � ����

�
� (8)

The problem of dynamic time warping has thus been
elegantly solved by interpolating the �� curves based on
the weights derived from � ��� 	� 
�. In other words, the
warp operation tantamounts to stretching and squeezing
inter-state times of the framespaces to achieve regular
volumes, where the magnitude of transformation depends
on � �	� 
�, at time instance �. So in the special case of
� ��� 	� 
� lying on a primitive frame, �����, the corre-
sponding states in the other primitives (������ � �� �) are
warped to follow the inter-state gaps of �����.

S1

S1 S2 S3 S4 S5

F2

F1

A cycle of two framespaces F1 and F2

S1 S2 S3 S4 S5

F2

F1

�t

Correspondence
        States

S2 S3 S4 S5

Framespaces F1 and F2 after warp

S1 S2 S3 S4 S5

Fwarp

�t

Correspondence
        States

S1

F1
S5S2 S3 S4

S1

F2

S5S2 S3 S4

Figure 3: Regularization Warp of Primitives

4.4 Linear Parametric Blending
The previous section describes how pre-blend time warp-
ing is done to align the primitives. However, it must be
noted that we do not actually warp the framespaces for
each point � ��� 	� 
� on the interpolant, since it would
incur a lot of meaningless computation. The reason for
warping the framespaces is to yield a regular subspace,
and extract the bounding states for the current interpolant
sample � ��� 	� 
�. The bounding state check is done in
the warp compensated regular subspaces.
Once the bounding states have been identified, the next

step is to extract the reference frames from the primitives.
This can be achieved through linear coordinate geometry,
as expressed by Eqns.(9) & (10).

�
���� � �� �

�

��� (9)

����� � ��

�
�
�
��� �

����
�� ����

�
����

�
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where

� � Current cycle time

�
���� � Relative time in warped subspace w.r.t. state n-1

��
���� � Differential time in warped subspace w.r.t.

state n-1, from Eqns.(7) & (8)

�
�

� � Time of state n after warp compensation

�
�
� � Time of state n of framespace ��, i = 1,2,3,4

����� are the reference frames from primitives ��,
which are used for the linear weighted blending opera-
tion shown in Eqns.(11) & (12). � ���� 	� and � ���� 	� 
�
are the results of 2D and 3D framespace interpolation.

�
���� 	� � ��� �� ����� � � ����� (11)

�
���� 	� 
� � ��� ����� �� ����� � ���� �� �����

���� ��� ����� � �� ����� (12)

where ����� from Eqn.(10)



4.5 Frequency Transition
Having calculated the value of the result frame, it is
equally important to place it at an appropriate distance
from the last calculated frame. This is how default fre-
quency calculation of the resulting motion can be de-
scribed at a micro level. Though the framespace time axis
is normalized, the time periods of the original cyclic mo-
tions are used to calculate the inter-sample durations of
��, as shown in Eqn.(14). These are linearly blended with
weights derived from � ��� 	� 
� in Eqn.(13), to yield the
gap between the current and previous output samples.

Æ
���� 	� 
� � ��� ����� ��Æ� � ���� ��Æ�

���� ���Æ� � ��Æ� (13)

Æ� �
	�

�
� � � �� � � � � 
 (14)

where

	� � Time period of motion clip �

� � Resolution of interpolation curve samples

Thus a transition from a low frequency motion to a
high frequency motion is accompanied with equivalent
changes in joint angular values as well as motion fre-
quency. This simple yet generic method does away with
the need for a procedural frequency transition formula-
tion or user defined time warps for natural motion transi-
tions.

4.6 Special Treatment of Pelvis Translatory DOFs
The range of angular DOFs is finite, governed by joint
limits. However, the translatory DOFs of the root (pelvis)
are not bound by any limits. So interpolating changes[12]
in translatory motion has two benefits: it does not require
the basis motions to start at the same global position, and
it eases interpolation across many cycles using only one
cycle of each primitive. We build instantaneous velocity
curves for each participating pelvis (translatory DOFs)
by differencing neighboring samples. The interpolation
procedure is the same as the rest of the DOFs, except that
the source frames are drawn from the velocity curves, and
instantaneous velocities have to be scaled down by Æ� in
Eqn.(14) before blending. The interpolated value is then
added to the previously calculated sample of the result
curve to yield the spatial value.

5 Experimental Results

The algorithm has been implemented in Alias/Wavefront
Maya�� API and run on Intergraph TDZ2000 (450MHz
CPU with 128MB RAM). Though the basis motions are
cyclic, we use a single cycle extracted from the MOCAP
data. Desired number of cycles are generated through
repeated self-concatenation of the primary cycle after

smoothing the start and end regions. Our results are ob-
tained from four basis motions, namely, walking, run-
ning, a common dance step (dance1) and the ”Egyptian
rap” (dance2). Fig.4 shows the key postures of these ba-
sis motions, the time progression being from left to right.
We have specifically chosen the dance motions to show
that our algorithm can handle motion transitions between
widely varying classes of full bodied motions.

(a) Walk cycle

(b) Run cycle

(c) Dance1 (common dance) cycle

(d) Dance2 (Egyptian rap) cycle

Figure 4: Key postures of basis motions

We present here both 2D and 3D interpolation test
cases. Table 1 presents a state classification of the ba-
sis motions, based on which correspondences are auto-
matically established as shown in Table 3. Table 2 ex-
plains the meanings of the abbreviations used in labelling
states. Note that a state can contain more than one char-
acteristic event and is taken care of during state match-
ing. From Table 1, it is evident that the upper and lower
body coordination of dance2 is 180� out of phase with
the rest of the motions. A possible solution to such state-
sequence clashes is to perform decoupled blending in the
two halves of the body, and is a subject of ongoing re-
search. We have presented some preliminary results of
such decoupled blending in sequences involving dance2.
Fig. 5 shows examples of concatenation and blend



Run Walk Dance1 Dance2
Cycle Time Cycle Time Cycle Time Cycle Time
0.77s 1.24s 2.43s 3.07s

Lowerbody Lowerbody Lowerbody Lowerbody
L. et (0.0) L. et (0.0) R.HI flex (0.0) L. mt (0.0)

R.HI flex (0.22) R.HI flex (0.22) R.H gnd (0.14) L. et (0.36)
R. mt (0.26) R. mt (0.26) L.HI flex (0.41) R.HI flex (0.41)
R. et (0.48) R. et (0.49) L.H gnd (0.69) R. mt (0.49)

L.HI flex (0.78) L.HI flex (0.88) R.HI flex (1.0) R. et (0.76)
L. mt (0.83) L. mt (0.9) L.HI flex (0.84)
L. et (1.0) L. et (1.0) L. mt (1.0)
Upperbody Upperbody Upperbody Upperbody
L.S ext (0.0) L.S ext (0.0) R.S ext (0.0) R.S ext (0.0)
R.S flex R.S flex L.S flex L.S flex

L.S msw (0.17) L.S msw (0.24) R.S msw (0.16) R.S msw (0.38)
R.S msw R.S msw L.S msw L.S msw

L.S flex (0.44) L.S flex (0.44) R.S flex (0.41) R.S flex (0.54)
R.S ext R.S ext L.S ext L.S ext

L.S msw (0.57) L.S msw (0.73) R.S msw (0.62) R.S msw (0.82)
R.S msw R.S msw L.S msw L.S msw
L.S ext (1.0) L.S ext (1.0) R.S ext (1.0) R.S ext (1.0)
R.S flex R.S flex L.S flex L.S flex

Table 1: Meta data of basis motions

Code Description
�LR�.[j] e �left or right joint�.[optional joint name] event name

e.g. L.S flex represents maximum flexion of the left shoulder joint
flex Local maxima in joint flexion
ext Local minima in joint flexion
mt Mid transfer (refer to [6])
et End transfer (refer to [6])
msw Mid swing or half way between flexion and extension
gnd End effector touches ground plane after being in air
joints S: Shoulder; HI: Hip; H: Heel

Table 2: Index to state label abbreviations

shapes of the interpolant. The interface allows the anima-
tor to manipulate control vertices of the B-Spline inter-
polant curve to shape the transition function. The curve
is automatically constrained to lie within the framespace
bounds. The physical length of the framespace time axis
is transformed via logical mapping of a user-specified
number of cycles onto it, to achieve transitions over vari-
able durations. The resolution of the time axis is made
proportional to the number of cycles, to maintain a con-
stant number of samples per cycle and avoid aliasing
effects. Fig. 6 shows the results of blending (�) and
concatenation (�) between the basis motions. Running
and walking are somewhat similar in motion character-
istics, so the real challenge was in trying to blend dif-
ferent genres of actions like the Egyptian rap and run-
ning. The concatenations are seamless and yield consis-
tent motion. Blending via 3D framespace interpolation
yielded a curious mix of the two different dance styles
and jogging, something which looks like a happy jive.
Thus framespace interpolation can achieve the same emo-
tional qualities as cited in [14] by using appropriate ba-
sis motions. For example, a cyclified angry gesticula-
tion blended with walking would yield an angry walk.
Performance statistics are presented in Table 4. Concate-
nation (�) and blending (�) operations (decided by the
interpolant shape) are both presented for the four cho-
sen combinations of primitives. The experiments use
a 63 DOF articulated figure. For identical primitive-

Run, Walk Dance1, Dance2 Run, Walk, Dance1, Dance2
Lowerbody Lowerbody Lowerbody
�L. et� �R.HI flex� �L. et�
�0.0, 0.0� �0.0, 0.41� �0.0, 0.0, 0.69, 0.36�
�R.HI flex� �R.H gnd� �R.HI flex�
�0.22, 0.22� �0.14, 0.76� �0.22, 0.22, 1.0, 0.41�
�R. mt� �L.HI flex� �R. mt�

�0.26, 0.26� �0.41, 0.84� �0.26, 0.26, 0.14, 0.49�
�R. et� �L.H gnd� �L.HI flex�

�0.48, 0.49� �0.69, 1.0� �0.78, 0.88, 0.41, 0.84�
�L.HI flex� �R.HI flex� �L. et�
�0.78, 0.88� �1.0, 0.41� �1.0, 1.0, 0.69, 0.36�
�L. mt�
�0.83,0.9�
�L. et�
�1.0,1.0�
Upperbody Upperbody Upperbody

�L.S ext, R.S flex� �R.S ext, L.S flex� �L.S ext, R.S flex�
�0.0, 0.0� �0.0, 0.0� �0.0, 0.0, 0.41, 0.54�

�R.S msw, L.S msw� �R.S msw, L.S msw� �R.S msw, L.S msw�
�0.17, 0.24� �0.16, 0.38� �0.17, 0.24, 0.62, 0.82�

�R.S ext, L.S flex� �L.S ext, R.S flex� �R.S ext, L.S flex�
�0.44, 0.44� �0.41, 0.54� �0.44, 0.44, 1.0, 1.0�

�R.S msw, L.S msw� �R.S msw, L.S msw� �R.S msw, L.S msw�
�0.57, 0.73� �0.62, 0.82� �0.57, 0.73, 0.16, 0.38�

�L.S ext, R.S flex� �R.S ext, L.S flex� �L.S ext, R.S flex�
�1.0, 1.0� �1.0, 1.0� �1.0, 1.0, 0.41, 0.54�

Table 3: Correspondence results yielded by system

Operation(Participants) Execution Time (secs) Result Duration (secs)
�(Run,Walk) 5.06 12.33
�(Run,Walk) 4.97 11.53
�(Dance1,Dance2) 5.22 32.67
�(Dance1,Dance2) 5.08 33.43
�(Run,Dance2) 5.42 22.83
�(Run,Dance2) 4.87 25.86
�(Run,Walk,Dance1,Dance2) 5.61 21.87
�(Run,Walk,Dance1,Dance2) 5.93 18.33

Table 4: Statistics for 1200 interpolation operations

combinations and number of operation cycles, the lengths
of the results are different for concatenation and blend-
ing because of the frequency blending component, which
is used to achieve natural transition timing. Fig.7 illus-
trates the timing transition mechanism and velocity inter-
polation of translatory DOFs (monotonic curves in Fig.7).
The smooth change in cyclic duration is clearly evident in
the rotational DOFs. Animation clips of results presented
in Table 4 are available at [1].

6 Discussion

Having explained the algorithm and presented the results,
we now address some critical questions to compare our
methods with related research, and evaluate the role of
some of the employed techniques. Pertinent issues about
why and how we modify existing techniques and what
gains are achieved, are outlined below:

� Simplified Time Warp vs Physically based Cor-
respondence: We have simplified Bruderlin’s ap-
proach of using physically based correspondence
techniques[13] to correlate and warp motions. We
refer to our warp algorithm as dynamic because it
constantly changes with time, unlike that in[3, 9].

� Necessity of framespace warps in identifying ref-
erence blend frames: While it is relatively simple



to determine the bounding region of interpolant P in
2D using coordinate geometry, doing so for irreg-
ular 3D sub-spaces is non-trivial and computation-
intensive[6]. In our case, regularizing the subspaces
via framespace warping, provides a common refer-
ence and corresponding blend frames can be easily
extracted.

� Performance considerations: The performance of
our proposed pre-blend framespace warp is highly
efficient, since only a few event-reference points
(states) are shifted along the time axis, instead of
the entire set of signal samples. The warp is used
to calculate the blend frames’ locations, instead of
physically adjusting all the samples at every junc-
ture. Each transition operation involves three lin-
ear blending operations, namely, framespace warp,
DOF value interpolation and frequency interpola-
tion.

� Quality considerations: By using blend frames
from the entire framespace, we exploit high fre-
quency information in the basis motions, unlike[6].
Even dropping some of the correspondence events
used in[6] yields no visible degradation, since the
angular-blend resolution is not hampered. We use
event states from the entire body and not just lo-
comotion states (e.g. unlike[6]), to develop corre-
spondence between actions. This widens the appli-
cation of our algorithm in interpolating significantly
different motions (eg. running and dancing). Lastly,
though linear blending is being used, a tight cou-
pling between framespace warping, DOF value in-
terpolation and frequency blending, achieves a fluid
transition.

Though our algorithm is efficient, it only tackles a sub-
set of motion editing problems. For instance, it does not
take care of motion retargetting. Though smooth inter-
polations are achieved, self collision may occur and ad-
ditional validation needs to be done. Lastly, if basis mo-
tions are drastically different, results might not be accept-
able due to the lack of adequate correspondence.

7 Summary and Future Work

We have presented a refined framespace interpolation al-
gorithm, which is better suited (but not limited to) edit-
ing MOCAP data. Consistent interpolation is achieved
by corresponding labelled states from different basis mo-
tions. Weights drawn from the interpolant drive a dy-
namic regularizing warp function, parametric interpola-
tion and transition timing. Velocity interpolation is per-
formed for pelvic translations. Four basis motions, run,

walk, dance1 and dance2 have been used to illustrate
blending and concatenation results.
Our chief contributions can be summarized as fol-

lows: a) Refined existing algorithm to exploit high fre-
quency information of MOCAP data. b) Efficient compu-
tation via simplified dynamic framespace warps and lin-
ear blending. c) Fluid transition with minimal user spec-
ification, achieved via weight-coupled framespace warp,
DOF value interpolation and frequency interpolation. d)
Generalization of framespace interpolation to involve dif-
ferent classes of motions.
We are currently investigating a generalized decoupled

blending mechanism, and seamless mixing of acyclic and
cyclic primitives. Work remains on developing a robust
IK assisted cyclification algorithm and motion validation
scheme. The results we have achieved so far, are ex-
tremely encouraging. The framespace interpolation tech-
nique, though based on simple principles, promises to be
an efficient, expressive and powerful animation tool, very
much feasible for practical use.
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(a) Interface

(b) 2D concatn. (c) 3D blend

Figure 5: Framespace Interpolation interface.
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Figure 6: 2D & 3D Interpolation results

Figure 7: Pelvis DOFs of ��w,r�




