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Abstract
We present a method for generating line drawings of
complex geometries in the style of crosshatched illustra-
tions. Hatching lines are generated by intersecting the
geometry with a set of planes. Half-toning on the basis
of the generated curves is used to represent a given inten-
sity distribution. Computing a geometric skeleton allows
us to determine automatically the orientation of the in-
tersection planes for a wide variety of models. By using
predefined line styles different types of illustrations can
be generated. Applications of the method are discussed,
examples are given.
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1 INTRODUCTION

Traditional printing techniques have evolved in our cen-
tury in a way that realistic images like photographs can
be included in every book at affordable costs. But, a look
at scientific, technical, or medical documents shows that
many of the images are in fact not photographs but il-
lustrations, sketches or other line-oriented drawings [26].
The reason for not using photographs here is that com-
plex information can be conveyed better by using abstract
drawings instead of realistic images [23, 27].
The need for generating such drawings has motivated

a number of authors to work on non-photorealistic ren-
dering techniques, while most of the work in computer
graphics done so far has been dealing with the generation
of photorealistic images.
Early work in non-photorealism focussed on how to

draw hidden lines in order to enhance the comprehensi-
bility of line drawings [1, 11]. Drawing with different
lines styles was introduced by Dooley and Cohen [3],
while Strassmann [25] proposed a method for simulating
hairy brushes in order to obtain watercolor-like drawings.
Guo and Kunii added a method for simulating ink-diffu-
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sion on paper [8]. Hsu and Lee [10] extended the set of
possible line styles by generating strokes that use textures
from arbitrary pictures.
Schofield [13] recognized that the generation of line

drawings and other non-photorealistic drawings can be
made easier by using 2-D images and additional informa-
tion about the underlying 3-Dmodel. This idea was intro-
duced earlier but independently by Saito and Takahashi
[18] for generating expressive images of landscapes and
medical data.
A method working with stroke textures was introduced

by Salisbury, Winkenbach and Salesin [20, 29, 19] to cre-
ate hatching lines that represent texture and tone of the
model. They extended their work to resolution-dependent
hatchings and developed methods for interactive and au-
tomatic definition of stroke directions within the textures.
In [30] the approach was applied to parametric sur-

faces. Elber presented line-art images of NURBS sur-
faces in [4]. A disadvantage of both approaches is that
lines are directed along parameter directions which leads
to problems if parametrization changes between patches
or, as in the case of triangular surfaces, parametrization is
not given explicitly.
Recently, Elber presented a more general but still

parameter-based solution for illustrating parametric and
implicit forms [5]. Among other techniques, intersections
are used to generate line strokes on various objects.
A method for hatching curved surfaces independently

to parametrization was proposed by Leister [14]. He uses
a special kind of ray tracing in combination with volume
textures and image processing operators for the genera-
tion of hatching lines. The appearance of the volume
texture on the surface of an object is modulated by the
light intensity to produce the illusion of hatching lines.
Though the images are impressive, aliasing artifacts and
numerical inaccuracies occur.
Our approach overcomes some of the restrictions of the

previous methods. We are able to process non-parametric
surfaces as, for example, polygonal data. A real lighting
model including shadows and all other visual effects is
used on the basis of a photorealistic shaded image. And
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Figure 1: Two examples of traditional illustrations using hatching. In both cases, the hatching strokes can be seen as
intersection curves with directions chosen in dependence on the geometry.

even more important, the 3-D objects are explicitly inter-
sected with a set of planes.
This approach offers several advantages:

1. Instead of generating hatching lines on a pixel-by-
pixel basis, whole curves are generated which are
then drawn in a post processing step using a diver-
sity of line styles.

2. The direction of the planes can be chosen auto-
matically for a number of models. This allows
controlled-density hatching. Also, artifacts like
closed intersection curves can be avoided.

3. Methods that rely on depth-values [18] or intersec-
tions between rays and volume textures [14] tend to
produce visible artifacts. We avoid this by using
a hybrid algorithm that uses analytic clipping and
pixel-based post processing. Treating intersection
curves as a whole allows us to eliminate remaining
artifacts by applying smoothing techniques.

We will demonstrate most of these advantages in the fol-
lowing sections. In Section 2 we review traditional il-
lustration techniques and motivate why the intersection
with a set of planes is an appropriate method for hatch-
ing curved objects. Section 3 outlines our framework for
intersection based hatching.
The basis for all following operations is the generation

of intersection curves. This is reviewed in Section 4. Sec-
tion 5 deals with the definition of such intersection planes

in dependence to the model. For a wide range of objects,
the orientation of these planes can be generated automat-
ically by computing the geometric skeleton of the object.
This will be demonstrated.
Our method of half-toning on the basis of intersection

curves is given in Section 6, while Section 7 deals with
applying line styles to the illustration.

2 CLASSICAL ILLUSTRATION TECHNIQUES

In Figure 1, two examples of traditional illustrations are
given. Figure 1(a) shows an anatomical illustration taken
from a textbook, while in Figure 1(b) a picture of a nun
is shown which was done by using a copper plate. The
hatching lines of both illustrations can be regarded as
coming from intersections between parts of the model
and a set of planes.
In Figure 1(a) the hatching lines on the veins are drawn

in a way that the direction of the intersection planes is
always perpendicular to the direction of the veins. This is
also the case for the lines on the nun’s scarf. It is clear that
the lines generated in these examples are not the exact
intersection results. They contain some artifacts, noise,
and also intentional variations introduced by the artist.
Another observation concerns the appearance of the

lines: In the left picture, hatching lines are drawn using
a pen, while in the right a copper plate was engraved.
These different production processes can be simulated
in a computer-generated drawing by using different line
styles.



In addition, both pictures approximate the intensity
distribution of an imaginative photograph taken from the
same scene. Especially the copper plate tries to simulate
natural lighting. This is done to imitate the way in which
we normally perceive the drawn objects.

3 COMPUTER-GENERATED ILLUSTRATIONS

The above observations lead to an overall scheme for cre-
ating illustrations. In this section, the scheme is outlined;
the ingredients are described in more detail in the re-
mainder of this paper. The following steps can be dis-
tinguished:

1. Specify the viewing direction, take a snapshot
So far, the process of creating hatched illustrations is
view-dependend in a way that the intersection lines
can be optimally placed only for a small viewing an-
gle.

We have to specify a viewing direction and then a
photorealistic shaded image of the object is to be
taken. At this time all kind of global illumination
effects like transmission, reflection or shadows can
be introduced.

2. Segment the object
Next, the 3-D model has to be segmented into parts
that are to be handled by the same line styles and in-
tersection sets. For complex objects dozens of such
sets may be used.

Segmenting the model has to be done manually as
it depends on the geometry and the content of the
model.

3. Create the intersection lines
For each part of the model the set of intersecting
planes is created. The user can define planes interac-
tively while the intermediate planes are interpolated,
or the system creates the planes automatically. The
number of planes has to be chosen depending on the
model, on the viewpoint and on the line style which
will be used later.

4. Calculate the line parameters (Half-toning)
In the last step a line renderer is applied to all parts.
Each intersection curve is processed in a way that
the appearance of the curve approximates the tonal
values of the surrounding region. This is a special
kind of half-toning based on the intersection curves.

Now suppose that the viewing direction is chosen, the
snapshot is taken and the model is segmented in a desir-
able way. The next step in our framework is to specify
and to create the intersections. In the following section

the latter is described, in Section 5 two methods of defin-
ing intersection planes are given.

4 CREATING INTERSECTION CURVES

The intersection curve between a surface and a plane can
be computed either analytically or on a pixel-by-pixel
basis. Analytic approaches (as used in [5] for para-
metric and implicit surfaces) work directly on the model
and generate precise results. Each surface description re-
quires its own intersection algorithm and sophisticated
implementations are needed to deal with complex objects
efficiently.
Pixel-based methods work on a discretization of the

object. Every kind of surface can be processed as long
as the elements can be discretized. The accuracy depends
on the screen resolution and therefore precise results may
require a fine discretization.
But how to avoid the aliasing errors that occur in pixel-

based algorithms? Fortunately, OpenGL, as the most
widespread graphics programming language makes use
of a hybrid method that mixes analytic and pixel-based
computation. While most of the routines in the graphics
pipeline work on the concept of fragments (small parts of
objects, in general pixels), clipping is done analytically
on the basis of polygons [7]. The user might specify up
to six additional clipping planes to the viewing volume.
Such an additional clipping plane that represents the

desired intersection plane is used for determining the in-
tersection curve. Our algorithm works as follows:

1. Display model, take snapshot

2. Extract pixels on boundary (Image Ifull )

3. Display model with clipping plane, take snapshot

4. Extract pixels on boundary (Image Iinters )

5. Generate I � Iinters � Ifull

6. Convert I to line segments

The first step is done by drawing the object in white
on a black background (cf. Figure 2(a)). Steps two and
four are performed on a pixel-by-pixel basis by determing
the pixels that have a black neighbour. To avoid fat diag-
onal lines (see Figure 2(c)) it is usefull to use only the
4-neighbourhood of a pixel. Step five is a simple im-
age operation that can be performed in the accumulation
buffer, if available. The conversation from pixels to line
segments is done by using least square fitting [16, 24].
A big advantage of the above algorithm is that graphics

hardware can be used in steps one, three, and five. Copy-
ing of image data and pixel operations are also cheap on
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Figure 2: OpenGL-based generation of intersecting lines: (a) Flat shaded image of the model. (b) Image with addi-
tional clipping plane. (c) Resulting curve after subtracting the outline of the complete model. (d) The whole set of
intersection curves.

modern graphics workstations. This allows to process
very complex objects in a reasonable time [2].
The algorithmwas also used to generate the silhouettes

of the objects to be illustrated. Silhouettes are important
ingredients of many line drawings as can be seen below.
In this case it is also possible to use an analytic algorithm
like the one of Markosian et al. [15].
In Figure 2(c) one important artifact can be seen: The

intersection lines in the region of the statue’s head and
the shoulder are visually unpleasant. If the orientation of
the planes is chosen differently, this effect can be even
worse. For closed objects like a simple sphere, it is even
impossible to find a single set of intersecting planes that
does not have such regions somewhere on the surface.
Similar problems occur in NC applications like milling

where the trajectories of the cutters have to be deter-
mined. A region like the statue’s head would introduce
a larger error than other parts of the object.
In our case we have the advantage that only one view

has to be generated with visually pleasing curves. So we
avoid the effect by defining the set of planes individually
for each viewing direction and by choosing sets of planes
which are not parallel. This resembles what is done by
artists in their artwork.

5 DEFINING INTERSECTION PLANES

Section 4 described the computation of an intersection
curve if the corresponding intersection plane is given.
Like motivated above, the appropriate definition of a set
of these planes is crucial for generating pleasant illustra-
tions.

In this section we introduce two methods for defining
intersection planes: One is the interactive specification
which gives the user full control over the planes but re-
quires some interactive work, the second method deter-
mines the planes automatically for a given geometry.

5.1 Interactive Specification

To specify a set of planes interactively, the user has to de-
fine a spline curve by positioning control points. Equidis-
tant points between the specified control points are used
to define each of the intersection planes. The user types in
the number of equidistant points to be used, these points
are automatically generated and visualized by the system
during movement of the control points. At each interme-
diate point, the intersection plane is defined by the point
itself and the derivative of the spline curve.
The derivative of the curve at the control points is visu-

alized by handles in the form of pyramids. The direction
of a pyramid defines the tangent of the spline curve, the
control point is the center point of the pyramid’s base.
The user specifies a number of such pyramids which are
drawn semi-transparent. As the spline curve usually has
to lie inside the geometry, the geometry is also displayed
semi-transparent.

5.2 Automated specification

For many models, the orientation of the intersection
planes can be computed automatically. We do this by cal-
culating a skeleton of the model. This skeleton produces
a graph of line segments inside the object that represents
topological and geometric properties of the object. The
topology is stored in the graph structure and the geomet-



rical information is stored in the length and angle of the
edges [6]. In Figure 3, an object and its geometric skele-
ton is shown.
Generating the skeleton is traditionally done by using

one of two methods: thinning algorithms based on pix-
els or voxels are used for unstructured data [12, 28] and
Voronoi-based approaches for structured input [6]. How-
ever, both methods are inefficient for the complex objects
we want to process. Instead, we use the algorithm devel-
oped by one of the authors in [17], which works directly
on the geometry of the object.
The algorithm assumes that the object is represented

by a triangular mesh M� with n edges. The basic ele-
ment is the edge collapse operation introduced by Hoppe
et al. [9]. Instead of using the edge collapse for reducing
the geometry, our sequence of edge collapses goes much
further: The initial mesh is reduced until no regular trian-
gles exist any more.
Degenerated triangles with zero area would also appear

in Hoppe’s algorithm if the algorithm is not forced to omit
places that will generate such triangles. In the present
case, we treat the degenerated triangles as line segments
and build a graph out of these.
Additionally, in each reduction step, the edges of the

mesh are sorted by their length in order to collapse short
edges first. This is motivated by the fact that collapsing a
short edge produces only a small geometric deformation
and therefore the skeleton is located as near as possible
to the initial geometry. The outline of the algorithm is as
follows:

sort all edges of the model according to their length
while faces remain in the model do
take shortest edge e�v�� v��
collapse edge
for all adjacent edges ev of v� and v� do
if ev has no regular faces
add ev to the skeleton
delete ev from model

else
re-sort edges with ev

Skeleton

Figure 3: A geometric object and its skeleton

Instead of sorting the edges after each edge collapse,
during one step a series of collapses can be performed.
To avoid problems with updating the data structure, each
collapsed vertex is marked with all adjacent vertices. As
stated in [17], this refinement of the algorithm works in
the average case with a time complexity ofO�n logn� for
n collapses. In the worst case a complexity O�n� logn�
is achieved.
After performing the skeleton operation, the resulting

line segments can be smoothed or converted to a spline.
The resulting curve is now used for defining the intersec-
tion planes as described above.
Figure 4 gives an example of a curved object that was

hatched by using a skeleton. The appearance of the lines
was generated by so called priorized drawing and half-
toning. Both techniques are described in the next section.

Figure 4: Hatching a knot by using the geometric skele-
ton.

6 HALF-TONING USING INTERSECTIONS

As mentioned above, classical illustrations often try to
simulate natural lighting by the means of hatching lines.
To incorporate this into our illustration framework, we
use a photorealistic shaded image of our model and per-
form a half toning step based on the hatching curves.
Each line is responsible for representing the tonal value

of that part of the surface which is near the curve, e.g.,
that is the Voronoi region of the curve with respect to the
neighbouring curves.
To compute the appropriate regions efficiently, we gen-

erated twice as much intersection curves as needed and
used the intermediate curves for determining the regions
of each hatching curve. Now the tonal value of the re-
gion is calculated along the line and the line thickness at
equidistant points is computed in order to represent the
gray-scale tone. As a result, the line fills the region by
its thickness if the part of the region is black, if the tonal
value is 50%, the line width is half the width of the re-
gion.

6.1 Drawing with priorized hatching lines
It is well known in non-photorealistic rendering that
hatching of curved objects requires adaptive density con-
trol [21]. If half-toning should be achieved only by en-



larging the thickness of the intersection lines, either ugly
fat lines will appear at the outside of a curved object or
the tone is too light. In Figure 5(a) the problem can be
seen. Here, the knot was hatched using a single set of
curves.
Our solution to the problem is to use priorized drawing

of the curves. This is done by generating as many curves
as needed for nicely hatching the outer parts of the ob-
ject. Let us assume that we need four times more lines in
these regions than for the inner parts of the model. This
is sufficient in most cases; if more lines are needed, the
method can easily be extended.

(a) (b) (c)

Figure 5: An example of priorized drawing; (a) a single
set of lines is used, in (b) and (c) two more line sets are
added.

First, every fourth curve is drawn. The line widths are
restricted to be below a given maximal width. Conse-
quently, the corresponding regions do not fully partition
the object.
On top of these curves every second curve is drawn.

In this case the lines are drawn using a white halo corre-
sponding to the region of the surface that is represented
by the curve. In the last step, the remaining curves are
also drawn haloed. Figure 5 shows the process. The
effect that the lines which were drawn first are partly
erased by following lines can be seen in Figure 5(b) and
(c) on the straight part of the geometry in the background.

6.2 An example
In Figure 6, the whole process is shown as applied to
a bust of Beethoven. On the left, the shaded image of
the bust is shown. On the right, we see a computer-
generated copper plate using our techniques. As de-
scribed in Section 3, the lines were calculated separately
for each part of the model and the line widths were cal-
culated to achieve half-toning.
For the face, two sets of lines were combined. One set

was drawn using black lines and one using white lines.
By combining the line thickness of both black and white
lines appropriately, half-toning is achieved.

7 APPLYING LINE STYLES

After the intersection curves are defined and the line
width is calculated, one degree of freedom is still left:
the line style that is to be used for drawing the line.
In our system, the intersection curves form the path of

each stroke to be drawn [22]. Several attributes like thick-
ness and tone can be added to vary the output. The line
styles might introduce some extra curves or simulate the
effect of unstable strokes. In the case of scientific illus-
trations, such line styles are sometimes used for example
to visualize motion.
In Figure 7 the bones of a foot are illustrated by four

methods. Two images show only the outline which was
drawn using different line styles. In the other images
intersection lines are added. All images show the model
in visualization styles that can be found in traditional
scientific illustrations.

8 CONCLUSION AND FURTHERWORK

We presented a method to generate crosshatched illus-
trations of geometric objects. The method uses intersec-
tions of the geometry with a set of planes for generating
the hatching curves, the intersections are determined de-
pending to the model. This is done either by interactive
specification or by automated generation. The skeleton
needed here was generated by a new algorithm that works
directly on the surface of the object.
A hybrid analytic and pixel-based intersection algo-

rithm was proposed that allows to process even highly
complex objects efficiently. The resulting curves were
drawn in order to achieve half-toning. This can also be
found in many traditional illustrations. The system al-
lows to generate different line styles in order to achieve a
wide range of illustrations.
Future work will include other intersection primitives

like cylinders or spheres. This will help to achieve new
artistic images but will also require a new process of clip-
ping as these clipping primitives are not supported by the
graphics hardware.
Currently, branching objects like veins or trees cannot

be hatched automatically as the branches have to be
processed in a special way. This problem has to be solved
first. Also, other objects like plants or technical devices
have to be considered and special hatching methods have
to be developed.
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Figure 6: (a) A conventional shaded image of a bust of Beethoven; (b) computer generated copper plate using the
image.

Figure 7: Several illustrations of a foot. Left column: Two different line styles were used to draw the outline of the
foot. In the upper image the line thickness is varied according to a virtual light source, in the lower image a uniform
line thickness is used. Right column: In the upper image uniform lines were drawn, in the lower image a different
light source was used and the hatching lines were varied to achieve half-toning.


