
Discrete Parametrization for Deforming Arbitrary Meshes

Shigeru Kuriyama Toyohisa Kaneko

Department of Information and Computer Sciences
Toyohashi University of Technology

Tenpaku-cho, Toyohashi, Aichi, 441-8580, Japan
{kuriyama,kaneko}@tutics.tut.ac.jp

Abstract
Techniques for deforming polygonal meshes are demon-
strated by using two-dimensional lattices of control
points or functions for pasting features. The deformations
use a shape-preserving parametrization that embeds the
mesh’s vertices in a normalized two-dimensional space
while preserving shape consistency for non-flat surfaces.
A discrete smoothing used for the parametrization has
inefficient iterative calculations, which is unsuitable for
manipulations of dense meshes, and an initial approxi-
mation for the smoothing is therefore proposed in order to
reduce the number of iterations. The approximation uses
a graph-searching algorithm and a discrete normalization
whose computational costs are negligible in comparison
with that of the iterative calculations.

Key words: Deformations, polygonal meshes, shape-
preserving parametrization, shortest path, free-form de-
formation, feature pasting.

1 Introduction

Polygonal meshes are the most basic representations of
surfaces, and the geometrical independence of their ver-
tices allows their shapes to be flexibly manipulated. How-
ever, direct editing of polygonal meshes requires tedious
efforts by designers to preserve their visual smoothness
and continuity, because such meshes have no shape con-
trols based on their own analytical models. Therefore,
some continuous functions are generally used to control
deformations.
Sederberg [16] proposed a space deformation tech-

nique called free-form deformation (or FFD). The tech-
nique smoothly deforms a local 3D space by manipu-
lating a parallelepiped 3D lattice whose vertices, called
control points, represent the coefficients of trivariate ba-
sis functions. Because of the usability and versatility
of FFD, many methods have been proposed for enhanc-
ing intuitive controls or extending the deformable space
[4, 9, 15]. These space deformations embed vertices in
local 3D parameters defined in a linear space of a convex
hull, and are effective when a mesh is globally deformed

in coarser-level editing. Local deformations in finer-level
editing, however, often lack intuitiveness because the de-
formations tend to affect a mesh according to 2D coordi-
nates defined on the mesh’s surface rather than 3D co-
ordinates defined in a lattice. Moreover, deformations
with a 3D lattice inherently require more control points
to be manipulated than those with a 2D lattice. Singh
[18] proposed a deformation, called WIRES, that flexibly
controls the shapes of meshes by manipulating a network
of curves spread near the meshes. The deformation em-
beds vertices according to their Euclidean distances from
the curves (or wires), and thus lacks isometric correspon-
dence between the surface’s geometry and the parametric
space if a deformable region has a non-flat shape.

Recently, techniques for parametrizing polygonal
meshes were proposed for the purpose of reconstruct-
ing surfaces and mapping textures. Eck [5] proposed a
method of embedding vertices by using harmonic maps
that minimize metric distortion, in order to fit B-spline
patches to polygonal meshes. This method, however, re-
constructs triangular domains as quadrilateral domains by
using a combinatorial graph-matching algorithm with a
heuristic measure of distortion, which is time-consuming
and difficult to implement. Krishnamurthy [11] proposed
a method of fitting B-spline patches to meshes by con-
structing uniform grids on the meshes with spring iso-
curves. This method lacks robustness for very peaked
shapes and is not adaptable to the local changes of
the mesh’s resolution. Lee [13] proposed an adaptive
parametrization using a hierarchical smoothing based on
Loop subdivision in a parameter domain. This method hi-
erarchically embeds vertices into barycentric coordinates
on a mesh of the coarsest level for adaptive remeshing.
However, like harmonic maps [5], it requires mapping
from triangular domains to quadrilateral ones when it em-
beds vertices into Cartesian coordinates.

Floater [6] proposed a discrete parametrization us-
ing convex combinations of nearby vertices’ parame-
ters. The way of determining weights for the com-
binations categorizes the parametrization as uniform,

chord-length, or shape-preserving, and he showed that
the last parametrization can most smoothly reconstruct
shapes. Levy [14] introduced another type of discrete
parametrization for non-distorted texture mapping. Their
parametrization is more flexible than Floater’s method in
controlling the gradients of parameters by adding min-
imization constraints, called homogeneity and orthogo-
nality, to the roughness criterion. The additional con-
straints depend on each other and some tradeoff must be
considered for distorted surfaces. The degrees of influ-
ences between these constraints must be controlled by
designers, which is intuitive for controlling a texture map
but not for deforming a shape. Moreover, the orthogo-
nality constraint is less intuitive for deforming a shape,
and the homogeneity constraint can be omitted by intro-
ducing a surface metric to the roughness criterion, which
leads to the same condition as Floater’s parametrization.
For these reasons, we use shape-preserving parametriza-
tion proposed by Floater for constructing a deformation
mechanism.

We here consider that meshes tend to consist of a large
number of polygons (or facets) when they are used for
designing shapes with deformations. However, the com-
putational costs of the abovementioned parametrizations
are enormous for such dense meshes, because the order of
calculation is not linear to the mesh’s resolution. There-
fore, we propose a technique of accelerating Floater’s
parametrization on the basis of a graph-searching algo-
rithm. We then apply the discrete parametrization to two
types of deformations: one that deforms shapes by ma-
nipulating a 2D lattice and another that pastes featured
shapes. These techniques deform meshes by translating
the vertices with offset functions through deformations.
Deformations of this type allow local shape modifications
to be more simple and intuitive than those used in space
deformations, and the ways in which the shapes are de-
formed are not restricted by criteria such as functional
minimization [20]. Moreover, the computational cost of
the offset functions is proportional to the number of con-
stituent vertices, which ensures that shapes are deformed
at interactive rates.

In the following sections, we first introduce a
parametrization of polygonal meshes based on discrete
smoothing, and then propose a technique for reducing the
number of the iterative calculations needed to attain con-
vergence for the smoothing. We next explain about ma-
nipulations of deformable regions on a mesh. After that,
we present some deformations that effectively utilize the
parametrization.

2 Discrete Parametrization

A polygonal mesh is a piecewise-linear approximation of
a surface, which is formally represented by a set of ver-
tices’ positions and connectivity that define the shape and
topology. Let Pi ∈ R3 be the 3D position of the i-th
vertex that forms a mesh, and let (ui, vi) ∈ D be cor-
responding parameters defined in local 2D Cartesian co-
ordinates D ⊂ R2 on a mesh. The value of ui (or vi)
forms a scalar valued surface, called a u-surface (or v-
surface) that has the same connectivity as a parametrized
mesh, and both u- and v-surfaces are generically called
uv-surfaces. In this section, we explain a method of gen-
erating uv-surfaces only for a u-surface, because a v-
surface can be obtained in the same way.

2.1 Discrete smoothing
A u-surface must be smooth and reflect the surface metric
of a mesh. Floater [6] presented a condition for ensuring
smoothness on triangular meshes by using convex com-
binations as follows:

ui =
∑

j∈Ci

λj uj ,
∑

j∈Ci

λj = 1 , (1)

where Ci is a set of index numbers for nearby vertices,
which represents the connectivity of Pi.
The iterative system for smoothing the u-surface is

composed so that the value of ui is updated to satisfy
equation (1):

ui ← k ui + (1− k)
∑

j∈Ci

λj uj , (2)

where the constant k is set as 0 < k < 1 to ensure con-
vergence of the iterative calculation. The constant is em-
pirically set at about k ≈ 0.01−0.1 for dense meshes and
is gradually increased as the resolution of a mesh is de-
creased, in order to reduce the number of iterations. The
above iterative calculation is continued until the mag-
nitudes of correctional values for ui are below a given
threshold on all vertices; ∀Pi , |∑j∈Ci

λj uj−ui| < τ ,
where the threshold τ is determined according to the
mesh’s resolution. Similar iterative techniques are in-
troduced in smoothing of polygonal meshes [19, 12] and
editing of multi-resolution meshes [10].

2.2 Shape-preserving parametrization
The weights λj can have arbitrary positive values that
divide a unity. One way to set them is to use chord
lengths between nearby vertices as λj = ‖Pj −
Pi‖−1/

∑
l∈Ci
‖Pl − Pi‖−1, which can reflect the sur-

face metric for non-flat meshes, where ‖ ‖−1 denotes the
inverse of the geometric length of a vector. The chord-
length criterion linearly approximates the arc length, and

the efficiency of the approximation depends on the degree
of detail in representing curved shapes with constituent
polygons. However, the linear approximation is sufficient
for deforming meshes, because the meshes are usually
minutely subdivided on deformable regions in order to
obtain smooth shapes.
Floater proposed a more sophisticated technique [6],

called shape-preserving parametrization, that determines
the values of the weights by combining the barycentric
mapping. Briefly, the nearby vertices Pj∈Ci are pro-
jected onto Xj ∈ R2 so as to preserve the Euclidean
distances from the vertex Pi and so that the angles be-
tween the edges sharingPi are proportionally reduced as
follows:

Xj = (Lj cos(2 π ωj), Lj sin(2 π ωj)) ,

Lj = ‖Pj −Pi‖ , ωj = θj/
∑

l∈Ci

θl ,

θ0 = 0, θj+1 − θj = (Pj+1 −Pi) ∧ (Pj −Pi) ,

where A ∧ B denotes the angle between two vectors A
and B, and the cyclic order of indices j is defined so
that Pj and Pj+1 are contained in a common polygon.
Next, the barycentric coordinates at Xi are calculated
with respect to a triangle 	j∈Ci whose vertices denoted
byXj , Xϕj , andXϕj+1, where the consecutive vertices
Xϕj , Xϕj+1 are selected so as to enclose Xi with Xj .
Let a triplet (ε0, ε1, ε2) be defined by cyclic permuta-
tions of (j, ϕj , ϕj + 1); the weights λj in equation (1)
are then obtained as follows:

λj =

∑Ni

l=1 bl
j

Ni
, bj

ε0 =
area(Xi, Xε1 , Xε2)

area(Xj , Xϕj , Xϕj+1)
,

where bj
ε0 represents the barycentric coordinates for the

nearby vertex Xε0 on the triangle 	j , area() represents
the area of the triangle whose vertices are given in the ar-
guments, and Ni denotes the number of nearby vertices
of Pi. Notice that ∀ j, bj

l �=j,ϕj,ϕj+1 = 0. Smoothing
based on the shape-preserving criterion is more effective
than that based on the chord-length criterion for highly ir-
regular meshes that consist of the polygons whose shapes
and sizes are extremely dissimilar. For a more detailed
theoretical discussion, see [6].

2.3 Boundary conditions
Parametrization based on discrete smoothing requires im-
position of linear constraints along all boundaries. We
fix the values of (u, v) parameters at the vertices on four
boundaries that correspond to the edges of a quadrilateral
enclosing a deformable region. A pair of opposite bound-
aries imposes the constant values of u = 0 and u = 1 on
their vertices, and the other pair of boundaries imposes

the linearly interpolated values of 0 ≤ u ≤ 1 with re-
spect to the chord-length between successive vertices as

u0 = 0 , ui+1 − ui =
‖Qi+1 −Qi‖

∑NB−1
l=0 ‖Ql+1 −Ql‖

,

where Qi, i = 0, 1, . . . , NB represents the i-th vertex
that composes a boundary polyline. These boundary con-
ditions normalize the u-parametric space, and the bound-
ary conditions for v-surfaces are similarly imposed by
exchanging the constraints between two pairs of bound-
aries.
The four boundaries are arbitrarily formed on a mesh

by tracing the connections of vertices, which often causes
jagged patterns (or aliasing). This jagging breaks the
continuity of the u-surface across the boundaries. On
the other hand, the ways of forming quadrilateral bound-
aries are limited if the vertices are traced along the given
connections so as to avoid such jagging. We therefore
add vertices on the edges of the polygons, as shown by
the white circles in Figure 3, so that the boundaries are
formed by smooth polylines. The values of the (u, v) pa-
rameters of the additional vertices are fixed according to
the type of boundary conditions, and the vertices’ con-
nectivity along the edges is reconstructed. Notice that the
vertices on the boundaries are added only on uv-surfaces
and not on a parametrized (or deformed) mesh. The way
of generating boundary polylines is after explained in
subsection 4.1.
The iterative calculation in equation (2) can be local-

ized by calculating only vertices inside a deformable re-
gion. However, the resulting u-surface has unnatural gra-
dients on the boundaries if the vertices outside the de-
formable region are removed from the calculation. We
therefore include the vertices that reside on several ex-
ternal layers, tracing the mesh’s connectivity from the
boundaries in the directions of outer half spaces. The re-
dundant external vertices serve to correct the gradients of
uv-surfaces on the boundaries through smoothing.

3 Acceleration of parametrization

The parametrization must be efficiently calculated when a
deformable region is interactively changed. The number
of iterative updates for generating uv-surfaces, however,
depends on the number of vertices in the region, and thus
the calculation cost for parametrization exceeds the lin-
ear order of the number. The iterative calculations can be
reduced by selecting the optimal value of the constant k
in equation (2) on the basis of eigenvalue analysis of the
linear system [8]. However, the effects of correctional up-
dates propagate from the boundaries to the center, which
inherently requires a number of iterations proportional to
the mesh’s resolution. Hierarchical smoothing of the uv-

surfaces dramatically reduces the number of iterations -
in optimal cases, below some constant [12, 10]. This
is because the coarser-level smoothing provides well-
approximated initial values for the finer-level smoothing.
However, hierarchical structures severely limit the ways
of selecting deformable regions. On the other hand, ar-
bitrary selection of the regions forces reformation of the
structures, which cannot be performed at interactive rates.
For these reasons, the hierarchical approach is unsuitable
for efficient and flexible parametrization, and we there-
fore introduce another way of simply and quickly deter-
mining the initial guesses of (ui, vi) in order to reduce
the number of iterative calculations needed for smooth-
ing.
Shape-preserving (or chord-length) parametrization is

a homeomorphic mapping (R3 → R2), denoted by Ω,
and can be conceptually decomposed into two processes
as Ω = Ψ ∗ Φ. The notation Φ is an isometric mapping
of a part of a non-flat mesh enclosed by a quadrilateral
onto a flat surface while preserving the proportions of all
edges’ lengths, and the notation Ψ is a mapping (R2 →
R2) of the flat surface onto a square diagram representing
a normalized (u, v) parametric space, as shown in the
following figure.

0 1

1

u

v

(u, v)

� �

(a) Working 3D space

(b) Isometric 2D space

(c) Normalized 2D
 parametric space

s

t

�
(x, y, z)

(s, t)

Figure 1: Decomposition of mapping for parametrization

3.1 Graph-searching algorithm
Let the mapping Φ be approximately computed by
searching for the minimum distance from a boundary, and
let the mapping Ψ be approximately computed by using
discrete normalization, where both computational costs
are far less than that needed for exactly solving equation
(1). The resulting values are then used as initial values
of iterative calculations in equation (2) in order to obtain
accurate values. We first evaluate the distance of each
vertex from the boundary corresponding to u = 0 (or

v = 0), using a one-source shortest-path algorithm pro-
posed by Dijkstra [1]. Assume that the vertices on the
boundary u = 0 are connected to the virtual starting ver-
tex and that the cost at the vertices are set to zero, and
assume also that the cost of the other vertices are ini-
tially set to infinity. Then the total cost (or distance) at
each vertex is calculated by regarding the mesh’s con-
nectivity as a bidirectional graph and by searching for
shortest paths, where the cost along each edge is deter-
mined by its geometric length. Theoretically, the calcula-
tion cost of Dijkstra’s algorithm with a priority queue is
O(E log N), where E and N represent the numbers of
edges and vertices, respectively. The number of connec-
tions of each vertex can be regarded as being below some
constant, and therefore E is proportional to N , which
leads to O(E log N)→ O(N log N). Therefore the cost
of calculating shortest paths is small enough in compar-
ison with the iterative calculations for smoothing, which
is after evaluated in Table 1. The total cost at each vertex
along a shortest path approximates the minimum distance
from the u = 0 (or v = 0) boundary, and represents the
value of s (or t) defined on an isometric plane as shown
in Figure 1 (b).

3.2 Discrete normalization
We here evaluate the normalized parameters (ui, vi) as-
suming that (si, ti) are obtained by bilinear transforma-
tions of (ui, vi) as follows:

si = (s0 + (s1 − s0) vi) ui ,

ti = (t0 + (t1 − t0)ui) vi , (3)

where (s0, 0), (0, t0), and (s1, t1) denote the values of
isometric parameters (s, t) at the corner vertices whose
normalized values (u, v) correspond to (1, 0), (0, 1), and
(1, 1), respectively. Equation (3) leads to quadratic equa-
tions with respect to ui or vi whose coefficients are de-
termined by the values of (si, ti) at each vertex. The val-
ues of (ui, vi) are first obtained by solving the quadratic
equations, and are next iteratively corrected as follows:

ui ← k ui + (1− k) si/S(vi) ,

vi ← k vi + (1− k) ti/T (ui) , (4)

where the constant k is determined in a similar manner to
that used in equation (2). The function S(vi) (or T (ui))
returns the normalization factor of si (or ti) at the param-
eter vi (or ui), and is composed by linearly interpolating
the values of s (or t) at the vertices that reside on the
boundary of u = 1 (or v = 1). The values of (ui, vi)
are iteratively updated by equation (4) until the correc-
tional values are below a given threshold for all vertices,
similarly in equation (2). We empirically confirmed that
several iterations are enough for the values to converge
except for highly irregular meshes.

3.3 Evaluation
In Table 1, we show the effects of acceleration for various
meshes. The first column denotes sample meshes shown
in Figure 2, where the mesh (c) has two deformable re-
gions on the forehead and nose, and the second column
denotes the number of vertices in the deformable regions.
The third and fourth columns indicate the amount of CPU
time and the number of iterative updates needed to attain
convergence for the smoothing with and without acceler-
ation, respectively, where the threshold τ for determin-
ing convergence is set to 10−4, and the times spent for
acceleration, which include search of shortest paths and
discrete normalization, are enclosed in brackets.

Data No. With acceleration Without acceleration
vertex Time No.iter Time No.iter

(a) 5356 1.87 [0.33] (56, 37) 23.71 (717, 504)
(b) 4501 4.21 [0.25] (42, 192) 20.61 (653, 484)

(c) Nose 1052 0.55 [0.04] (87, 135) 0.77 (152, 167)
(c) Head 755 0.1 [0.02] (30, 30) 0.45 (159, 115)

Table 1: Computational costs of parametrization

(a)

(b)

(c)

Figure 2: Examples of meshes and deformable regions

The CPU times, listed in units of a second, were mea-
sured on a R5000 (180-MHz) machine, and the numbers
of iterations were counted for u- and v-surfaces sepa-
rately as indicated in this order in parentheses. These
examples show that the computational costs of calculat-
ing initial guesses are negligible, and the effect of our

acceleration is conspicuous for mesh (a), which has a
large number of vertices and high regularity. Notice that
the wireframes are drawn in every four spaces to visu-
ally clarify the pattern of the meshes, and thus the actual
meshes are obtained by subdividing the polygons drawn
by the wireframes 4× 4 times.

4 Manipulations of deformable regions

4.1 Generation of boundary polylines
A deformable region is arbitrarily set by constructing
edges of a quadrilateral; it is, however, difficult to draw
curved polylines corresponding to the edges directly on a
curved mesh. We therefore offer a simple way of form-
ing the polylines by merely selecting four corner ver-
tices Wi, i = 1, 2, 3, 4. Four planes are then created
so as to include each pair of the vertices (Wi,Wi+1),
and their normal vectors Hi are determined as Hi =
(Wi−Wi+1)×(Ni+Ni+1). Here,Ni denotes the nor-
mal direction of a tangent plane at the vertexWi, which
is determined by averaging those of the polygons sharing
Wi, and × denotes an outer product. The polylines are
then generated by connecting the intersections of poly-
gons’ edges with the planes, as shown in Figure 3. The
intersections are merged into a mesh’s vertices if the ge-
ometric distance between them is very small, in order to
avoid degeneracy of an edge, as shown by the gray circles
in Figure 3.

Ni

Ni+1

Hi

(N + N) / 2i i+1

: Bezier control point’

Bezier patch

Clipping plane

’

Wi

Wi+1

: Corner vertex

: Merged vertex

: Additional vertex

Boundary polyline

Figure 3: Generation of boundary polylines

Boundary polylines are simply and intuitively gener-
ated by clipping a mesh with planes; they should, how-
ever, be more flexibly formed on a mesh, to extend the
definitions of deformable regions. We therefore intro-

duce sweep surfaces of Bézier curves for flexible forma-
tions of the boundary polylines. Bézier curves of the n-
th order are generated by selecting n sequential control
points on a mesh, and by sweeping the curves along the
averaged normal (Ni + Ni+1)/2, as shown in Figure 3.
The intersections of the sweep surfaces and the polygons’
edges are efficiently calculated by using the Bézier clip-
ping method [17]. Krishnamurthy’smethod [11] of paint-
ing boundary curves is also usable, which enables more
flexible drawing of boundary polylines in compensation
for the computational cost of fitting B-spline curves on a
mesh.

4.2 Conversions of coordinate systems

Thus far we have proposed discrete parametrization only
for Cartesian coordinates; however, it is expected to be
used for managing other types of coordinates, such as
polar coordinates and barycentric coordinates, in order
to extend the definitions of deformable regions.

Polar coordinates, whose parameters are denoted by
(r, θ), should generate scalar-valued r θ-surfaces by fix-
ing vertices on a circular boundary and a central pole.
However, the condition of equation (1) cannot generate
r-surfaces as conics that linearly diffuse the values of r
from a pole to a circular boundary. Moreover, regions
of circles or ellipses are hard to draw directly on a curved
surface, and they are generally drawn with rectangular re-
gions enclosing them, as in most 2D drawing tools. For
these reasons, we simply convert the Cartesian coordi-
nates obtained from a quadrilateral region into polar co-
ordinates, using a common transformation between the
coordinates.

Barycentric coordinates are defined on a triangular re-
gion and their values at Pi, denoted by (αi, βi, γi), are
generally determined by the proportions of the area be-
tween the region’s triangle and the sub-triangles whose
vertices consist of two corner vertices and Pi. There-
fore we select three corner vertices on a mesh, denoted
by Pα, Pβ , Pγ , and calculate a scalar valued surface
by regarding the vertex Pα as a degenerate boundary of
α = 1 and regarding the edge connecting Pβ and Pγ as
a boundary of α = 0, and call the resulting value α̂i. We
next similarly calculate β̂i and γ̂i by shifting the bound-
ary conditions among the triangular edges, and determine
the values of barycentric coordinates at Pi as follows:

χi =
χ̂i

α̂i + β̂i + γ̂i

, χ = α, β, γ .

It is noteworthy that these barycentric coordinates
inherit the isometric property from shape-preserving
parametrization.

5 Shape Deformations

In this section, we describe deformations that make ef-
fective use of our parametrization. We introduce an offset
function, denoted by F, that translates the vertex Pi to a
new positionP′

i with respect to its parameters (ui, vi) as

P′
i = Pi + F(ui, vi) .

Deformations can thus be categorized according to the
way in which they construct the function F. We intro-
duce two types of deformation: one constructs F with a
2D lattice of control points, and the other does so with a
pattern of an offsetting feature.

5.1 Two-dimensional FFD
FFD embeds vertices in a 3D parametric space using lin-
ear transformations [16], and requires management of
dense control points arranged in a 3D lattice. If we lo-
cally create a bulge or a dent in a mesh, control points ar-
ranged in a 2D space are sufficient for intuitively control-
ling the shape; the traditional FFD, however, must con-
struct a redundant 3D lattice to enclose the deformable
region. We therefore introduce a 2D version of FFD us-
ing our parametrization.
We here introduce offset vectors, denoted byOpq , that

are arranged in a 2D Np × Nq lattice. Control points
of traditional FFD determine vertices’ positions on de-
formed surfaces; the offset vectors, in contrast, determine
the extent of their variation from the initial shape. The
offset function is then obtained as follows:

F(ui, vi) =
Np∑

p=1

Nq∑

q=1

Opq Bp(ui) Bq(vi) ,

where Bp(ui) and Bq(vi) are basis functions such as
Bernstein polynomials or B-splines for the u and v di-
rections, respectively. As for B-splines, we give the non-
decreasing knot vectors ku

i and kv
i in the u and v direc-

tions with the boundary conditions of ku
1 = kv

1 = 0 and
ku

Np
= kv

Nq
= 1. The continuity conditions across the

boundaries are preserved by fixing the positions of the
offset vectors on outer layers as Opq = 0 for 1 ≤ p, q ≤
1 + L, Np − L ≤ p ≤ Np, Nq − L ≤ q ≤ Nq, where L
denotes the depth of the layer, which is determined by the
degree of continuity and the property of the basis func-
tions. For example, use of cubic B-splines as bases fixes
two layers L = 2 for second-order continuity.
Controlling shapes with a 2D lattice allows polygo-

nal meshes to be intuitively and hierarchically modified.
Such modifications are widely used, especially in spline-
based surface modelers, which control shapes by means
of hierarchically arranged control points [7]. Our FFD
with a 2D lattice allows similar hierarchical deformations

for arbitrary polygonal meshes. Moreover, concentric cir-
cular lattices [4] can be introduced by converting the co-
ordinate system from Cartesian (u, v) to polar (r, θ). Use
of barycentric coordinates also has the potential to extend
2D lattices so that they have arbitrary topology [15].
Figure 4 shows examples of deformations with 2D lat-

tices, where uniform cubic B-splines are used as bases
and deformable regions are shown in Figure 2(c). Fig-
ure 4(a) shows the arrangement of the lattices that are
defined by rectangular and circular grids on the nose
and the forehead, respectively, and arrows indicate off-
set vectors Opq , where the origins of the vectors, indi-
cated by spheres, are located at the vertices whose pa-
rameters are nearest to the corresponding knot values of
Opq; (ui, vi) ≈ (ku

p , kv
q). It is noteworthy that the loca-

tions of the spheres merely indicate the visual cue in ma-
nipulating offset vectors, and numerically have no effect
on the calculations of deformations. Figure 4(b) demon-
strates the deformedmesh with the lattices on Figure 4(a),
where the smoothing is accelerated and the threshold for
convergence is set to τ = 10−4, as is used for the eval-
uation of accelerations in subsection 3.3. Notice that the
meshes are flat-shaded to emphasis the facets.

(a) (b)

Figure 4: Free-form deformations with 2D lattices

5.2 Feature pasting
It is often useful for designers to supply offsetting pat-
terns as features, if local deformations are created as
combinations of simple bulges and dents. Designers
can then simply deform a shape by pasting the features
in arbitrary locations, scales, and directions on a mesh.
Pasting of surfaces has been proposed for B-spline sur-

faces [2] with useful interfaces [3] for manipulating the
pasting domain in a world space. This pasting method
uses a parametrization based on bilinear transformation,
and the parametrization is not isometric because of the
non-linearity in projecting the 3D position onto a quasi-
planar region spanned by four points. This non-isometric
property is not suitable for pasting features on non-flat
meshes, and we therefore introduce a way of pasting for
arbitrary meshes, using our parametrization.
The pasting based on B-splines [2] introduces vector-

valued mapping of offset surfaces, where the vectors are
interpreted in a coordinate frame calculated at each ver-
tex by using the surface geometry before pasting. Such a
coordinate frame for polygonal meshes requires the gra-
dients to be evaluated [14] with respect to the parameters
u and v; our parametrization, however, do not include
such gradients. Therefore, we use a normal direction Ni

at each vertex Pi instead of the coordinate frame, and
introduce a scalar-valued function G(ui, vi) that deter-
mines the offset alongNi, like scalar displacement maps
[11], as follows:

F(ui, vi) = Ni G(ui, vi) .

Use of the normal direction allows bulged or dented
shapes to be naturally pasted with respect to the orien-
tations of the curved shapes. However, it often causes
undesirable overlaps or folds in deformed shapes when
deformable regions have highly concave shapes.
Figure 5 shows the shapes of the offsetting features de-

fined on regular squares and the deformed meshes after
pasting, where deformable regions are shown in Figure
2(a) and (b), and parametrization is done with the same
conditions as those used in Figure 4.

6 Conclusions

We have proposed a method of discretely parametrizing
arbitrary meshes, and shown how it can be applied to
shape deformations with offset functions. The discrete
approach of parametrization allows greater flexibility in
controlling deformable regions with quadrilaterals on a
mesh, regardless of the mesh’s net pattern and resolution,
where the topology must be homeomorphic to a disc.
The parametrization is accelerated by discretely smooth-
ing uv-surfaces with initial approximations that are com-
puted by using shortest-path algorithm and discrete nor-
malization. As a result, our model of parametrization and
deformations can avoid fatal delays even in manipulating
dense meshes, which is inevitable in constructing inter-
active systems. The acceleration of the parametrization is
not so effective for highly irregular meshes; such meshes,
however, are rarely used for designing shapes of surfaces
in common CG and CAD applications.

(a)

(b)

Figure 5: Examples of feature pastings

7 References

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data
Structures and Algorithms, Addison-Wesley, 1983.

[2] Barghiel, R., Bartels, R., and Forsey, D. Pasting
Spline Surfaces, InMathematical Method for Curves
and Surfaces, Vanderbilt University Press, pages 31–
40, 1995.

[3] Chan, L. K. Y., Mann, S., and Bartels, R. World
Space Surface Pasting, In Proceedings of Graphics
Interface ’97, pages 146–154, 1997.

[4] Coquillart, S. Extended Free-Form Deformation: A
Sculpting Tool for 3D Geometric Modeling, In Pro-
ceedings of SIGGRAPH ’90, Comput. Graph., 24, 4,
pages 187–196, 1990.

[5] Eck, M. and Hoppe, H. Automatic Reconstruction
of B-Spline Surfaces of Arbitrary Topological Type,
In Proceedings of SIGGRAPH ’96, pages 325–334,
1996.

[6] Floater, M. S. Parametrization and Smooth Approx-
imation of Surface Triangulations, Computer Aided
Geometric Design, 14, 3, pages 231–250, 1997.

[7] Forsey, D. R. and Bartels, R. H. Hierarchical B-
Spline Refinement, In Proceedings of SIGGRAPH
’88, Comput. Graph., 22, pages 205–212, 1988.

[8] Golub, G. H. and Van Loan, C. F. Matrix Computa-
tions, The Johns Hopkins University Press, 1989.

[9] Hsu, W. M., Hughes, J. F., and Kaufman, H. Direct
Manipulation of Free-Form Deformations, In Pro-
ceedings of SIGGRAPH ’92, Comput. Graph., 26, 2,
pages 177–184, 1992.

[10] Kobbelt, L., Campagna, S., Vorsatz, J., and Sei-
del, H. Interactive Multi-Resolution Modeling on Ar-
bitrary Meshes, In Proceedings of SIGGRAPH ’98,
pages 105–114, 1998.

[11] Krishnamurthy, V. and Levoy, M. Fitting Smooth
Surfaces to Dense Polygon Meshes, In Proceedings
of SIGGRAPH ’96, pages 313–324, 1996.

[12] Kuriyama, S. and Tachibana, K. Polyhedral Surface
Modeling with a Diffusion System, In Proceedings
of Eurographics ’97, Comput. Graph. Forum, 16, 3,
pages 39–46, 1997.

[13] Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar,
L., and Dobkin, D. MAPS: Multiresolution Adaptive
Parametrization of Surfaces, In Proceedings of SIG-
GRAPH ’98, pages 95–104, 1998.

[14] Lévy, B. and Mallet, J. L. Non-distorted Texture
Mapping for Sheared Triangulated Meshes, In Pro-
ceedings of SIGGRAPH ’98, pages 343–352, 1998.

[15] Maccracken, R. and Joy, K. I. Free-Form Deforma-
tions with Lattices of Arbitrary Topology, In Pro-
ceedings of SIGGRAPH ’96, pages 181–188, 1996.

[16] Sederberg, T. W. and Parry, S. R. Free-Form Defor-
mation of Solid Geometric Models, In Proceedings
of SIGGRAPH ’86, in Comput. Graph., 20, 4, pages
151–160, 1986.

[17] Sederberg, T. and Nishita, T. Curve Intersection Us-
ing Bézier Clipping, Computer Aided Design, 22, 9,
pages 538–549, 1990.

[18] Singh, K. and Fiume, E. Wires: A Geometric De-
formation Technique, In Proceedings of SIGGRAPH
’98, pages 405–414, 1998.

[19] Taubin, G. A Signal Processing Approach to Fair
Surface Design, In Proceedings of SIGGRAPH ’95,
pages 351–358, 1995.

[20] Welch, W. and Witkin, A. Free–Form Shape Design
Using Triangulated Surfaces, In Proceedings of SIG-
GRAPH ’94, pages 247–256, 1994.

(a)

(b)

(c)

(a) (b)

(a)

(b)

