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Abstract

We introduce the Clonal Mosaic (CM) model for the syn-
thesis of mammalian coat patterns, present its implemen-
tation for modeling and display purposes, and give a few
examples of generated patterns. The model is based on
cell division and cell-to-cell interactions, and it can gen-
erate repeating spotted and striped patterns occurring in
several species of mammals, especially the big cats and
giraffes.

From a biological perspective, the model has a strong
appeal in light of recent experimental evidence on pig-
ment cells and other pigment related mechanisms; from
a computer graphics perspective, the model can not only
deliver many patterns which are visually similar to real
patterns and can be used as textures, but it is also
amenable to simulation on arbitrary surfaces.

Résumé

Nous présentons dans cet article un modèle de mosaı̈que
clonale (CM) pour la synthèse des patrons du pelage
de mammifères; nous présentons le but et les car-
actéristiques de ce modèle et son implantation et nous
donnons quelques exemples des configurations produites.
Le modèle est basé sur les interactions de cellules, et
il peut produire des configurations répétées de taches,
de rayures et de rosettes se produisant dans plusieurs
espèces de mammifères, particulièrement les grands
chats et les giraffes.

D’un point de vue biologique le modèle est très attirant
à la lumière de l’évidence expérimentale récente avec les
cellules pigmentaires; d’un point de vue infographique le
modéle peut non seulement fournir de nombreuses config-
urations, qui sont visuellement semblables aux vraies con-
figurations et qui peuvent être utilisées comme textures,
mais elles sont également appropriées pour la simulation
sur des surfaces de topologie arbitraire.

Keywords: natural phenomena, animals, pattern forma-
tion, mammalian coat patterns, texture mapping, texture
maps, giraffe

Introduction
In computer graphics, the detailed visual information of
a surface, such as colour, is usually integrated with the
object’s surface via texture mapping techniques [3, 14].
Within a texture mapping framework the visual informa-
tion is maintained as an array — the texture map. There
are basically three ways to obtain a texture map: scanning
in a real-world pattern, either using a desktop scanner or
a 3D digitizer, using a painting system to create an image
which will be later used as a texturemap (or even painting
the image directly on the surface of the model [13]), and
procedurally computing or synthesizing a texture.
Scanned real-world pictures are still the main source of

texture maps for many texture mapping applications. For
some classes of objects, however, scanning a real-world
texture or painting an image is too cumbersome and time
consuming. Besides, even if we consider that somehow
a good texture map is available, problems intrinsic to the
mapping technique still make the task of correctly map-
ping the available texture onto the final surface a difficult
one.
Take the case of modeling a tiger and using texture

mapping to generate the tiger stripes. If we decide to scan
in a texture, we would need a full color image of a “good”
and “stretched” tiger skin. On the other hand, we could
decide to paint an image to mimic the tiger fur pattern.
Even for a skilled user, both approaches would demand
a great deal of effort and artistic abilities. The problem
would be even worse if we wanted more than one tiger.
Despite having roughly the same appearance, each tiger
skin has its own characteristics and therefore we would
need to build as many texture maps as tigers needed, or
find a way tomodify a given texture intoanother, a task al-
most as difficult as generating the texture in the first place.
Alternatively we could define a procedure which would
output a “good” tiger pattern. The model introduced in
this paper provides such a procedure.
The animal patterns to which we will apply the model

include members of the Felidae family and the giraffe.
Examples of these patterns include the stripes on a tiger



and the rosettes on a leopard. The main idea of the model
is that the patterns on these animals reflect a spatial ar-
rangement – a mosaic – of epithelial cells which derive
from a single progenitor, i.e. they are clones. Hence we
use the name Clonal Mosaic (CM). Different hair col-
ors result from different types of underlying cells. The
model takes into account important and recent biological
experimental data such as the migration of and interac-
tions among epithelial cells [12]. The attractiveness of the
model from a computer graphics point of view is that it
can generate a large number of animal patterns with a rel-
atively small number of parameters, and this can be done
on surfaces of arbitrary shape and topology.

Previous Work
Pattern Formation Models in Biology
Although several models for mammalian pattern forma-
tion have been proposed, the actual mechanism respon-
sible is still an open question in biology for most pat-
terns. We can classify the existing approaches into 3 cat-
egories: reaction-diffusion, mechanochemical, and cellu-
lar automata.
Reaction-Diffusion (RD) was introduced by Turing

[35] as a possibility for many pattern formation phenom-
ena. The idea is that the chemical interaction of two sub-
stances, under some conditions, can produce stable spa-
tial patterns. The pattern appears if we “visualize” the
concentration of the substances. Turing’s initial ideas
were extended and elaborated intomany different models.
Murray [22, 20, 21], for example, proposes that the fur
pattern reflects a pre-pattern established by an RDmech-
anism. The concentration of substances involved in the
process would function as a switch to activate or not spe-
cialized pigment cells (melanocytes)[29] to produce one
of the 2 types of melanin [15, 10].
The work by Bard [2] presented RD models for the

more complex patterns such as the rosette and the mark-
ings of different giraffe species. He proposed two mecha-
nisms: cascade RD, an idea explored later in graphics by
Turk [36], where a sequence of RD processes would ex-
plain more complex patterns, and a threshold interpreta-
tion mechanism for the melanocytes to produce melanin.
Bard has also suggested the possibilityof having different
diffusion rates for different parts of the domain, a sugges-
tion also explored later in computer graphics [39].
Gierer and Meinhardt have proposed a number of RD

models to explain both specific and generic, visual and
structural patterns. In the book by Meinhardt [18] one
can find a good overview of their early generic models.
The specific problem of mammalian coat patterns is not
directly addressed in any of their models, but indirectly,
for example, throughmodels that can generate stripes and
therefore could explain striped animals such as zebras.

Many of their models included more than two substances
to account for more complex regulatory processes.
Most of the current work on RD is addressing theoret-

ical issues rather than experimental ones. Only recently
a simple real chemical system has been shown to pro-
duce patterns predicted by Turing 45 years ago [17, 26].
Whether or not such chemical systems can be reproduced
on biological tissues is still open for discussion. Perhaps
the main shortcoming related to the RD theory is the fact
that so far experimental biologists have not found or iso-
lated an actual morphogen, that is, a chemical substance
responsible for “form” generation.
The mechanochemical approach explains pattern for-

mation by mechanical forces acting on cells. The basis
for these models was established by Odell [23] and ex-
tended by many researchers [25, 38]. The forces are usu-
ally considered to be chemically induced. Recently, a new
mechanochemical model was introduced by Savic [32] to
explain pattern formation in animal coatings. He suggests
that coat patterns are an expression of a pre-pattern of po-
larized and unpolarized domains of epithelial cells. The
process of cell polarization is local and regulated through
a long range negative feedback mechanism due to elastic
forces.
Finally, the cellular automata [34] approach has also

been proposed to explain mammalian coat pattern forma-
tion. Young [41] introduced a cellular automata version of
an RD system where the intercellular interaction is more
localized than in Turing’s original model. Cocho [4, 5]
presented a pattern formation framework where the mul-
tiplication of cells is modeled assuming an initial small
number of “clonal” cells; these advance in time to a more
complex arrangement according to the automaton’s rules.
A clonal cell is a single cell which generates a visible ele-
ment in the final pattern, such as a spot in a spotted pattern
or a patch in the giraffe pattern.

Pattern Formation Models in Computer Graphics
An advantage of using biology-inspired models in com-
puter graphics is their potential to deliver more realis-
tic simulations which can usually be translated into more
realistic looking results. The images generated can be
used inside a biology context as a powerful argument ei-
ther against or in favour of the validity of the model [30].
Within the context of mammalian coat patterns we review
here the approaches by Turk [36], and Witkin and Kass
[39].
The basic RD systems studied in biology can gener-

ate a set of interesting but visually limited patterns (sim-
ple stripes, simple spots, etc.). Turk [36] developed the
idea of cascade RD processes proposed earlier by Bard
[2] where an RD system is simulated having as a start-
ing point another RD simulation. A typical example is the



pattern of large and small spots found on cheetahs. Vari-
ations on the way two or more RD processes interact can
lead to many different patterns. Turk also introduced the
idea of simulating the RD process on the surface of the
object being textured, an important contribution which
avoids many of the problems of texture mapping. How-
ever, his approach failed to use information about the ge-
ometry of the model to drive the pattern mechanism.
The main contribution of Witkin and Kass’s work [39]

was to extend the basic idea of RD by incorporating
anisotropy into an RD system, a suggestion also made 10
years earlier by Bard [2]. In their work, anisotropy is in-
troduced by assigning different diffusion rates in the RD
system as a function of direction in a local frame of ref-
erence. In a classic RD model, the same diffusion rate is
used for all directions. The control of different diffusion
rates for different parts of the surface is achieved through
diffusion maps defined by the user. In spite of their use-
fulness, the use of diffusionmaps just transfers to the user
the definition of the pattern, since the diffusion maps are
oftenmore responsible for thefinal result than theRD sys-
tem itself is.

The Clonal Mosaic Model
The basic idea of the CMmodel, borrowed from an active
area of research in developmental biology, is that groups
of contiguous cells in an organ are clones, that is, descen-
dents of common ancestors. Applying this to skin1, it is
natural to suppose that cells in differently colored areas
derive from different progenitors. We do not know this
for a fact, but there is observational evidence in support
of such a model. The supposition we work from is that
during the early development of the epidermis, some cells
differentiate so that their descendants encourage expres-
sion of dark pigments, while others differentiate to en-
courage expression of lighter pigments.
The epidermis does not produce colored proteins; these

are produced by specialized pigment cells (melanocytes)
[29] which migrate into the hair follicles during embry-
onic development. However, we knowa number of genes,
expressed in the dermis or epidermis, which affect the
expression of pigment. Chief among these is the well-
known agouti gene which is responsible for the produc-
tion of lighter colored bands on the hair of animals such as
cats. Where the agouti gene is expressed prominently, the
hair is (almost) completely yellow; where it is expressed
minimally, the hair is darker, usually brown. Other genes
control whether brown, black (or some other color) is the
base, and also control the effectiveness of the agouti pro-
tein coded for by the gene.

1Clonal mosaicism has been demonstrated for most of the major or-
gans in the body, however it has not yet been demonstrated for epider-
mis.

Most genes are pleiotropic— that is, they have mul-
tiple effects. We would expect the agouti gene to fit this
pattern. If so we might look for other differences between
the putative clones of “brown” cells and “light” cells. In
fact there are such differences. For example, in the “dark”
regions of a cat’s coat, the skin thickness is noticeably
greater. Also, the density of guard hairs (which carrymost
of the pigment) is greater than in light areas. We might
hope that these diverse effects would be manifestations of
some simpler effects of the agouti protein at the cellular
level.
Our hypothesis is that one effect of the expression of

agouti protein is to affect the growth rate of cells, such that
“dark” cells will split faster than “light” cells. This is con-
sistent with the anatomical evidence cited above. Also,
other things (such as mobility) being equal, this should
result in dark spots, or possibly dark blotches, on a light
background. This is in fact what is seen in all members of
the cat family.
This working hypothesis leads naturally to the idea that

the shape of a pattern element will be the shape of a clone;
the shape of a clone will be determined by the deforma-
tion induced by non-uniform stresses on the cells during
development. The stresses on the epidermis induced by
the expansion of the embryo are locally uniform, so that
the explanation of non-uniform stresses must lie in non-
uniform local expansion of the cell sheet, such as might
be caused by non-uniform cell splitting (mitotic) rates.

The Implementation
Whether the clonal mosaic hypothesis is correct or not is
obviously a biological problem. Our goal is to determine
the characteristics of the CM model as a pattern genera-
tor, and to check if we can turn the model into a practical
system to generate animal patterns for computer graphics
purposes. If we can, on the way, contribute to the valida-
tion of CM from a biological point of view, so much the
better.
The goal of the implementation described here is to

produce a pattern expressed as a 2D image in a regular do-
main — a square with toroidal boundary conditions. The
patterns produced by a given simulation can then be visu-
ally analyzed and used to evaluate themodel in a feedback
loop. Adjustments can be made regarding the parameters
and/or specific strategies of implementation.
The current implementation is one possible algorith-

mic translation of the theoretical abstract model presented
in the previous section and provides a powerful compu-
tational testbed. Our results from the implementation of
the model show that it is possible to obtain fairly realis-
tic looking patterns from various combinations of two pa-
rameters — mitotic rates and differential adhesion.



Cells and Groups of Cells
The number of biological cells necessary to represent a
given pattern can be very large (on the order of millions
at the time the pattern formation process takes place).
It would be computationally prohibitive to implement a
model which would represent each real biological cell.
For this reason we defined a representation scheme where
each cell in our implementation is actually a representa-
tion for a group of biological cells.
The assumption is that one cell in our system represents

the behaviour of a group of biological cells. The issue is
then to show that this assumption is plausible in both bi-
ological and mechanical terms. The only important bio-
logical trait that we have to assess is mitotic rates. Can a
single system cell dividing represent many individual bi-
ological cells dividing? If the mitotic rates are context-
insensitive then after many subdivisions, on average, we
will have the same ratio of system cells to biological cells,
that is, the assumption is valid.
In terms of mechanical behaviour, if many individual

cells are all subject to the same force then we can re-
place the set of cells by one single cell subject to a force
which can be think of as a resultant force. This trades off
modeling of individual behaviour for computational effi-
ciency. In other words we might be missing phenomena
with scales smaller than the size of a system cell. We think
the tradeoff is necessary. Throughout this description we
will use the term cells to refer to a system cell.

General Description
The potential number of types of cells in the system is ar-
bitrary. However, we restricted the system to 3 types of
cells, since we can express all desired patterns with only 3
types. We call them foreground (F), background (B), and
intermediate (M). The synthesis of a given pattern is done
through two main procedures: initialization and simula-
tion.
The initialization is responsible for distributing in the

domain the initial set of background cells and determining
the ones which differentiate into F orM. In a spotted pat-
tern, for example, the foreground cells would correspond
to the spots. Once the initialization is done, the simula-
tion through time starts. The initial distribution of cells
can also be determined at random, either all at once ini-
tially or progressively by the probability ofB cells mutat-
ing into F orM cells.
The implementationassumes that the only forces acting

on the cells result from cells maintaining their sizes under
adhesion control. The mobility of cells is a response to
these forces. Cell size is maintained by introducing a re-
pulsive force between cells that depends on the distance
between them and on pre-defined adhesion values. Cells
are modeled as points for computing purposes. Points are

Attribute Meaning Type
Color RGB 3 floats [0-1]
Division Rate Mean time between divisions float
Initial Prob. Prob. to be of this type float (0-1)
Mutation Prob. Prob. to switch to other type float (0-1)
Adhesion Drag between types float (0-1)

Table 1: Attributes of a cell

usually the first choice to represent a biological structure
as a cell [11]. Although points are a very simple primi-
tive, they have proved adequate enough for our purposes.
Equilibrium is reached by a relaxation scheme. The idea
of using repulsion on a surface to achieve a uniform spa-
tial distribution of points has been used before in biology
[33] and computer graphics [36][40]. To turn cells into
a tessellation of the surface, we compute their Voronoi
polygons. The Voronoi polygon of a point in a given do-
main is the region of the domain which contains all the
points closer to that particular point than any other [27].
The adequacy of Voronoi polygons to describe epithelial
cells was studied by Honda in [16]. According to him,
“...Voronoi polygons were shown to describe some cellu-
lar patterns (cultured monolayer cells, epithelial cells in
tissue, etc.) with relatively small deviation values.”

Initialization
A given user-specified number of cells is randomly placed
on a 2D square domain. Typical initial numbers are be-
tween 500 and 1000. The initial position of these cells
is given by a random uniform distribution function pre-
sented in [28]. Each cell is created with a given type
which is related in the theoretical model to the level of
expression of the agouti gene responsible for color. The
type of a cell can be specified both by the user or randomly
by the system. The type of a cell defines its behaviour in
the system. The information attached to a given type is:
color, division rate, probability for the cell to be of a par-
ticular type (only used when type is being determined by
the system), probability for the cell to switch to another
type (defined for every pair of types), and adhesion (also
defined for every pair of types). The current implementa-
tion of the probability functions is context-independent,
that is, not dependent upon the state of the neighbors. A
summary of these attributes is given in Table 1.
The cells undergo a relaxation process in order to

achieve a somewhat regular stable spatial configuration.
In order to achieve this configuration, each cell moves as
far away from all its neighbors as possible. Only cells
within a given repulsive radius are considered neighbors.
The repulsive radius is determined proportionally to the
average “ideal” area for each cell. Intuitively, the idea
is that each cell tends to occupy a constant area. For a
given area A and m cells, the repulsive radius r is given
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� r is the repulsive radius

� fi is a scalar which models the strength of

repulsion� We need a function for fi such

that fi � � when the distance between cells

di is � and fi � � when di � r

� wx and wy are user�defined weight factors

specific for the repulsive displacements

in the x and y directions �see section on

Anisotropy�

� n is the number of neighbors which fall

inside the area defined by the repulsive

radius

� Dxi and Dyi are the individual displacement

forces due to the neighboring cells Pi

� �PiC are user�defined adhesion values�

specific for the kind of cells involved�

Figure 1: Pseudocode for computing the new position of
a cell

as r � wr
p
A�m, where wr is a user defined scaling

value. An adhesion parameter � controls the strength
by which cells repel each other in the relaxation scheme.
This strength is proportional to �� � �� and � � �
means no repulsion at all. With this parameter we can, for
example, force any two types of cells to remain loosely
or strongly connected. In Figure 1 we present the pseu-
docode to compute the new position for a cell using the re-
laxation scheme. The individual displacement forcesDxi
andDyi are computed proportionally to a repulsive scalar
force fi (dependent upon the distance between cells) and

to an adhesion factor �PiC between cells Pi and C. The
adhesion factor is an expression of the fact that cells move
at different rates depending on the cohesiveness between
cells of various types.

(a) Random initial dis-
tribution of cells

(b) After relaxation

(c) Foreground cells
manually selected

(d) Foreground cells
randomly selected

Figure 2: Initialization (1000 cells)

Once a stable configuration is achieved (that is, the
maximum and minimum forces are relatively small) the
initialization procedure is over and the system passes to
the simulation phase, described in the next section. The
exact timing for stopping the initializationstep is not criti-
cal, since the cells continue to relax in the simulation step.
Figure 2(a) shows the created cells before relaxation; in
(b) the cells underwent the initial relaxation; in (c) the
foreground cells were manually selected, and in (d) the
foreground cells were randomly selected by the system.

Simulation
The simulation phase controls the evolution over time of
the initial distribution of cells into the final pattern. We
model the simulation through an event priority queue im-
plemented as a heap [6]. The two possible events are re-
laxation and division. Typically the queue will havemany
evenly spaced relaxation events and some sparse division
events. The rate of relaxation events is user controllable.
For each time step, we have � relaxation events in the
queue. The relationship between � and the division rate
models the relationship between cell subdivision and cell



motion. A large value for � allows time for the relaxation
forces to balance over the domain, that is, the cells are
closer to equilibrium.
During a division event one cell splits into two, i.e.,

they undergo mitosis. We can think of these as parent and
child cells. The child cell can be of a different type than
its parent, based on a probabilitymatrix given by the user.
The child cell inherits all the attributes corresponding to
its type. The position of the new cell is uniformly random
within a circle of diameter arbitrarily chosen to be 1% of
the repulsive radius centered at the position of the parent
cell. The exact time for the division of a cell is given by a
Poisson distribution with average equal to the rate of di-
vision for the cell. The Poisson distributionmodels small
variations on the timing for mitosis, otherwise the cells
would all split at the same time. There is no a priori end
to the simulation. The simulation procedure keeps adding
and handling events in the queue. The user can monitor
the progress at any time by stopping the simulation and
checking the pattern obtained up to that point in time.

Anisotropy
For some patterns we want to be able to set a preferred
direction for the cells to move. This can be accomplished
in three ways: i) when a given cell divides, the position
of its daughter is not randomly uniform, but it moves in a
preferred direction; ii) the repulsive forces acting on the
cells have a preferred direction. The first solution can ef-
fectively produce anisotropy only if the cell rate of divi-
sion is highwith respect to the rate of relaxation. With the
second solution we define two weighting factors wx and
wy which control how strong the x and y components of
a directional force are on a local frame of reference. The
third way would be using an anisotropic adhesion factor,
which would happen with cells of asymmetrical shapes.

Efficiency Considerations
Themost computationally intensive task in the implemen-
tation of the CM model is the relaxation step, since we
need to find all the neighbors for a given cell. The worst
case cost of this procedure is O�n�� where n is the num-
ber of cells.
To avoid this cost we implemented a dynamic rectan-

gular grid of buckets over the domain. The linear size
of each bucket is the same as the repulsive radius. This
scheme guarantees that we only have to check for neigh-
bors within the 8 buckets around the bucket of a given cell
plus the bucket that contains the cell itself. Each of these
buckets has a pointer to a linked list of pointers to the cells
it contains. Since the number of cells grows exponentially
with time we need to adjust the grid structure as the num-
ber of cells grow. The adjustabilityof the grid is necessary
because the overall domain size is maintained artificially

constant. In a growing domain the bucket size would re-
main constant and the number of buckets would increase
as the total area increases.
The grid information is updated (i.e., the number of

buckets increase) every time the new number of cells is
50% greater than the previous one. This guarantees a rela-
tively efficient computation scheme. To give a rough idea
of timing, the worst case among all computed patterns
(Figure 3(b)) took 173 seconds to compute on an Origin
2000 SGI (a 195Mhz processor) and the average time for
all patterns was 84 seconds.

Results
In this section we present results of patterns generated
with the CM model (the results are also available on-line
at www�cs�ubc�ca�spider�marcelow�cm�html). In
order to better assess the patterns visually, both computed
and real patterns are presented. The real patterns were
scanned from pictures of animals. The pattern we see on
an adult animal is actually the result of two phases of the
process, the first which took place some time during em-
bryo development on a shape changing with time, and the
second due to the growth of the body after birth. The pat-
terns we produced so far prove that the model is capable
of generating a planar 2D pattern which looks similar to
a projection of a pattern which is actually defined on the
curved surface of the animal’s body.

(a) G. c. reticu-
lata

(b) Computed

(c) G. c. tippel-
skirchi

(d) Computed

Figure 3: Giraffe patterns



The values for the parameters used to generate the pat-
terns shown in the figures are given in Table 2.

Giraffe patterns
The main taxonomy for giraffes in use today classifies
them into one species with 9 subspecies. The differences
in giraffe markings have been used as a key feature to
identify subspecies, even though this criterion has been
replaced by more objective ones such as skull measure-
ments. Visually speaking, the two most distinctive pat-
terns are fromGiraffa camelopardalis reticulata shown in
Figure 3(a) and from G. c. tippelskirchi, shown in Fig-
ure 3(c). The first is described by Dagg [8] as “the large,
smooth-edged liver-colored spots are placed closely to-
gether with only a fine network of light color dividing
them”. The second is also described by Dagg as “the
spots are usually splintered, forming all shapes of sharply
differentiated leaf or stellate designs, although some ap-
proach reticulata in design and color”. We can easily go
from reticulata to tippelskirchi patterns in our model by
decreasing the adhesion between F cells and increasing
adhesion between B cells as seen in Table 2.

Spotted patterns
Spotted patterns occur mainly in the cheetah and at the
extremities (mainly legs, head, and tail) of other big cats
such as the leopard and the jaguar. The cheetah presents
usually two distinctive spot sizes whereas for the jaguar
and leopard the spots are more regular in their size distri-
bution. Figure 4 shows the real and two computed spotted
patterns. In Figure 4(b) the initial probability of F cells
was slightly smaller than in (c).

(a) Real (b) Computed (c) Computed

Figure 4: Spotted patterns

For the jaguar and leopard, the spots “break apart” and
a third color appears inside the spot. This type of pattern
is known as a rosette. We simulate this type of pattern
by allowing the foreground type of cells to switch with
a small probability to the intermediateM type. Figure 5
shows an example of this result. The extra parameters for
this pattern, not mentioned in Table 2, are as following:

(a) Real (b) Computed

Figure 5: Rosettes

(a) Stretched Tiger Skin (b) Computed
Pattern

Figure 6: Anisotropic patterns

mitosisM = 10, �FB � ���, �BF � ���, �FM � ���,
�MF � ���, and �MM � ���.

Anisotropic patterns
Since the tiger is a close relative of all other yellow-black
type of big cats, the mechanism for generating stripes in
the tiger ought to be of the same type as the mechanism
generating spots or rosettes in the other big cats. There-
forewe have to considermechanisms that allowa cellular-
based system to eventually produce stripes. We believe
that the CMmodel can easily provide such a mechanism.
This possibility has been discussed earlier in biological
research by Bard [1] who said on the problem of stripe
patterning that “...the stripes might just appear or spots
might be generated on the dorsal line and be extended by
an inductive wave moving ventrally.”.
There has been no further research detailing how ex-

actly the wave process mentioned by Bard would work
and actually a wave mechanism is not really necessary for
the CM model to produce stripes. One clear point is that
the growth tensions present on the embryo at the time the
pattern is laid down have to play an important role on the
final patterns. In order to assess the behaviour of the CM
model with respect to anisotropic forces, we have done
simulations where the forces are much stronger in one di-
rection than in the other. One result is shown in Figure 6
where wy � ��wx. A full simulation of these effects de-



mands the simulationof the pattern formation sub-process
on a surface which has the same topology as the embryo
changing over time, goal of future work.

Assessing the patterns
In order to assess how close a given synthesized pattern
is to a real one, we use a qualitative and a quantitative
approach. In the qualitative, the generated patterns are
visually compared with pictures of real animal patterns.
Pictures provide an initial basis for comparison and have
been widely used to validate much modeling of natural
phenomena either in computer graphics (e.g. [9] ) or in
biology (e.g. [19]). In the quantitative approach, visually
important features of a real pattern are measured and used
as a metric for validating results.

(a) ReticulatedM=1.43 (b) CM Computed M =
0.896

(c) LeopardM =
0.702

(d) Jaguar M = 1.95

Figure 7: Voronoi Measures for different patterns

The main reason the giraffe pattern is used as an exam-
ple, even though in general our work is more focussed on
the Felidae family, is that the reticulated pattern is a clear
example of a simple geometric pattern, the Voronoi dia-
gram.2 The fact that the pattern is a Voronoi diagram can
be established quantitatively. After scanning in the pat-
terns, we drew by hand the outlines of the spots of the
pattern, and applied a geometric construction [24] to each

2We have to distinguish betweenVoronoicells mentionedearlier and
used to tessellate the 2D domain, and the Voronoidiagramcreated by the
overall pattern, which are unrelated.

cell that can determine the center of the Voronoi cell. The
estimated error on the position of that center is averaged
across all cells with a valid center, and this is the number
M we use to measure the closeness to a Voronoi diagram.
Figure 7 shows four patterns and the values of M for

the reticulata, one of our generated patterns, the leopard,
and the jaguar patterns. To give an idea of the meaning
of the magnitude, a value of 2.41 is obtained if we ran-
domly displace the vertices of the cells by 1% of the av-
erage perimeter of a Voronoi cell in an exact Voronoi di-
agram. Of course for an exact Voronoi diagramM � �.
One can see from these numbers that the giraffe spots

closely approximate a Voronoi diagram (the distortions
due to the curvature of the body do affect that number).
This pattern is quite basic, and it occurs in the big cats as
well, althoughnot as spectacularly as in the reticulated gi-
raffe. The fit of the leopard pattern is very good, the fit for
the jaguar is less so, but still convincing. These numbers
are useful in guiding the choice of parameters, since we
now know how close to a Voronoi diagramwe have to be.
The CM model can easily explain why a Voronoi pat-

tern is created. If the adhesion between cells of the same
type is high, and the adhesion between cells of different
types is relatively low, or even zero, then cells of the same
type will stick together. If the foreground (spot) cells di-
vide faster, they will crowd out the background cells and
push them to lines between the spots. The process is simi-
lar to the so-called prairie firemodel to produce a Voronoi
diagram. Other quantitative measures for validation can
be used. We reproduce in Table 3 statistical results about
giraffe patterns presented in [7].

Species Spot Area (%) Number of Sides
per Average Spot

tippelskirchi 59 12
reticulata 80 5
rothschildi 50 6

Table 3: Spot areas and spot shapes for giraffes (after[7])

The notion of spot area captures how much of the total
giraffe body’s area is covered with “polygonal spots”. In
the giraffe patterns produced with the CMmodel, we can
compute an equivalent ratio of the number of foreground
cells to the total number of cells and use this value to val-
idate them. The numbers from the CM model are �� for
the tippelskirchi subspecies and 	� for the reticulata sub-
species (Table 2). These numbers are close to the mea-
sured ones for the two subspecies, less than 7% variation,
a small value considering that the numbers given byDagg
are actually for the whole animal’s body.
The number of sides counted, while quite arbitrary for

the tippelskirchi, is reliable for the reticulata, and corre-
spond quite closely to the average number of sides for a



Parameters � wr time wx wy mitosis F mitosis B � FF � BB number of cells spot area
Giraffe (fig. 3(b)) 18 2.6 78 0.066 0.066 10 120 0.9 0.2 B=965 F=3385 78
Giraffe (fig. 3(d)) 18 0.6 70 0.066 0.066 10 150 0.2 0.9 B=979 F=1197 55
Cheetah (fig. 4(b)) 18 2 15 0.033 0.396 8 60 0.8 0.5 B=1512 F=991 -
Cheetah (fig. 4(c)) 18 2 15 0.033 0.396 8 60 0.8 0.2 B=1420 F=1177 -
Rosette (fig. 5(b))y 18 2 60 0.066 0.066 12 30 0.8 0.5 - -
Tiger (fig. 6(b)) 18 2.4 70 0.033 1.32 10 120 0.5 0.5 - -

Table 2: Table of Parameters for the Computed Patterns.
y For the rosette pattern, the F cell had a 70% probability of switching to an M type of cell.

Voronoi polygon in a Voronoi diagram, which is near 6
[24].

Conclusions
This paper introduced the Clonal Mosaic model for gen-
erating mammalian coat patterns and described an imple-
mentation of the same. We focussed our study on the pat-
terns from the giraffe and members of the Felidae family
(e.g., cheetah, tiger). The model proposes that these pat-
terns are an expression of an underlying spatial arrange-
ment of epithelium cells. Different types of cells are re-
sponsible for the different hair colors seen in these ani-
mals, and the patterns arise as the result of variations in
division rates, cell adhesion, and anisotropy in the motion
of cells.
The results so far have confirmed the potential of the

CM model to deliver an array of patterns visually similar
to real ones. In general, fairly realistic looking patterns
were obtained from combinations of 2 parameters, mi-
totic rates of cells and different levels of adhesion between
cells. For the giraffe patterns we determined that the basic
pattern is very close to a simple Voronoi diagram, and the
CM model can account for this easily, both conceptually
and with the produced patterns. Another measure is the
percentage of the surface area that is covered with spots;
we showed that the giraffe patterns produced by the CM
model are within 7% of the real patterns with respect to
spot area.
The next important step is the implementation of the

system on geometric models of animals, coupling the CM
model with the growth of the animal’s body. We want to
generate the patterns directly on the surface of the model,
without a texture mapping step. This has to be done while
taking into account the growth of the body [37] both at the
fetal stage and after birth, whichwill affect rates of cell di-
vision and mobility. This should allow us to obtain real-
istic patterns fully integrated with the body shape. We are
also pursuing the validationof themodel from the point of
view of the patterns produced, especially the quantitative
statistical analysis.
The model we described in this paper has deliberately

been limited to context-free rules of behaviour for the
cells. Wewanted to explore first the range of patterns pos-
sible with this simple model (this parallels the evolution

in power of L-systems [31] for plant simulation). There
are legitimate reasons to extend the model to context-
sensitive rules: in order to simulate any reaction-diffusion
system, context, in the form of the concentration of the
morphogens, is necessary. In real biological systems the
behaviour of the cells is clearly affected by context, in the
form of signaling chemicals sent across cells.
From the biological point of view, we hope that our im-

plementationwill encourage further studies on themitotic
rates, transition probabilities, and expression of the agouti
locus in the dermis that can confirm the biological validity
of the model. Finally, it should be noted that as it stands
the implementation does not help the user much in select-
ing the parameters for a desired type of pattern. This is an
issue that has to be addressed seriously when we feel that
the system is mature enough to be used by others.
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