Lighting Networks
A New Approach for Designing Lighting Algorithms

Philipp Slusallek

Marc Stamminger

Hans-Peter Seidel

University of Erlangen, Computer Graphics Group
Am Weichselgarten 9, D-91058 Erlangen, Germany
e-mail: {slusallek stamminger,seidel } @informatik.uni-erlangen.de

Abstract

In the past, new global illumination algorithms have usu-
ally been designed as a single module that was respon-
sible for the simulation of all aspects of illumination in
a scene. A recently developed alternative is the design
of small and specialized algorithms (lighting operators)
together with an infrastructure for creating more com-
plex algorithms by connecting these building blocks —
the Lighting Network.

In this paper, we discuss the benefits of the Light-
ing Network approach for designing new and improved
global illumination algorithms. Lighting Networks not
only provide a flexible infrastructure for new algorithms,
they also support a better theoretic understanding of the
lighting simulation process. We show that a small num-
ber of global light propagation operators already pro-
vides the basis for creating many of todays illumination
algorithms. Their illumination results are converted into
more suitable representations by purely local conversion
operators that are specific to an illumination algorithm.
Varying the composition of these operators and introduc-
ing new elements allows us to create and explore the ben-
efits of new simulation algorithms.

We demonstrate the potential of Lighting Networks
with several examples, implementing a diverse set of al-
gorithms, such as density estimation, irradiance gradi-
ents, and a composite lighting simulation.

Keywords: composite lighting simulation, global illumi-
nation, illumination representation, software design

1 Introduction

A large number of very sophisticated algorithms have
been designed for solving the radiance equation [6],
thereby computing the global illumination in a virtual
environment. The basic algorithms like stochastic ray-
tracing [7] or finite-element radiosity [8] have been mod-
ified and extended in order to increase their robust-
ness, accuracy and simulation domain, to accelerate the
computation, or to reduce their memory requirements

[10,9, 18, 16, 22,23, 21]. Many of these algorithms are
tailored towards specific environments: e.g. radiosity is
designed for diffuse inter-reflection, while most Monte-
Carlo algorithms are best suited for complex and general
environments.

In addition, combinations of the basic algorithms have
been developed that exploit the advantages of two or
more of these basic algorithms, leading to hybrid or
multi-pass techniques [24, 19, 11, 5, 26].

Hybrid methods may offer the best trade-off between
the specialized algorithms and the requirements for ef-
ficiently computing a global illumination solution for a
particular environment. However, existing hybrid meth-
ods are fixed combinations of algorithms that make it im-
possible to adapt them to a different environment. Re-
moving this restriction leads to the idea of Lighting Net-
works that provide the infrastructure for designing new
and improved global illumination techniques by flexibly
combining specialized algorithms. In that sense, Light-
ing Networks are similar to the idea of building block
shaders [1] but applied to the area of global illumination
computations instead of local shading.

In this paper, we explore the potential of the Lighting
Network infrastructure for the design of new algorithms.
We present a tool-box that consists of two main types
of components: light propagators and converters. The
small number of propagation operators are algorithms
that compute the transport of light through an environ-
ment and are the essential ingredients of the simulation.
These algorithms are augmented by a large number of
converters that use the data provided by the propagators
and convert it into a different representation better suited
to the requirements of a specific lighting simulation tech-
nique.

As we show below, large numbers of existing global
illumination algorithms vary mostly in their use of dif-
ferent converters and illumination representations, while
using the same basic propagation algorithms.

The advantages of the Lighting Network approach are

not simply the increased flexibility in software design
and reuseability of algorithms, but they lie much more
in its conceptual simplicity and the explicit structure of
algorithms that becomes visible by using the Lighting
Network approach. Splitting existing algorithms into dis-
tinct components allows for better identifying basic dif-
ferences and similarities between them. These distinct
components then become subject to being redesigned,
optimized, or replaced by other existing or new imple-
mentations. We discuss several such examples in Sec-
tion 5 below, after introducing the concept of Lighting
Networks and presenting our current tool-box of light
propagation and conversion algorithms.

2 Lighting Networks

We start our presentation with a brief description of the
basic Lighting Network approach. A more detailed de-
scription including extensions and a more formal defini-
tion of Lighting Networks can be found in [20].

2.1 Lighting Operators

The basic idea of the Lighting Network approach is to
split the computation of global illumination into separate
steps. In each step, one algorithm performs a part of the
whole simulation process. Each algorithm receives a de-
scription of illumination in the scene as input, performs
a partial simulation by propagating light, and makes the
updated illumination available to other algorithms. In
that sense, each of these algorithms modifies the illumi-
nation in the scene and is thus called a Lighting Operator
(or LightOp for short). By connecting the input and out-
put of different LightOps in the form of a graph, we can
obtain more complete simulations of the global illumina-
tion.

For a more formal derivation, we take the operator
form of the radiance equation L = L, + KGL, where K
is the local reflection operator and G is the global propa-
gation operator [4]. Due to the properties of KG, a well-
known formal solution of this equation is given by the
Neumann series

L=L,+KGL.,+ (KG)’L, + (KG)*L. +.... (1)

In the Lighting Network approach, we approximate
the two operators as sums of operators K = > K; and
G = Y G;j. Each of these terms may describe a term
of a reflection models (e.g. diffuse and specular compo-
nent) or reflection and propagation in different subsets of
the scene.

This concept allows us to use different algorithms for
computing the light transport, e.g. using a radiosity algo-
rithm for simulating diffuse reflection only, while another
LightOp is responsible for the non-diffuse reflection. The

lighting simulation then needs to account for the different
paths light can take as it is being reflected in the environ-
ment. In that sense, light paths correspond to different
permutations of the operators K; and G; in (KG)".

Each of our propagator LightOps is now responsible
for computing a subset of the possible light paths in this
environment (similar to [11]). For example, one algo-
rithm could compute the direct illumination of surfaces
by light sources, another would compute any number
of diffuse reflections between surfaces, and yet another
could account for specular or caustic light paths. By con-
necting the input and output of these algorithms in a suit-
able manner, we are able to simulate more complex light
paths. The concrete choice of the basic algorithms and
their connections determines, which light paths are sim-
ulated by a particular Lighting Network.

2.2 Representing Illumination

The main issue of the Lighting Network approach is con-
necting the individual LightOps in order to form a con-
sistent network. We use the concept of a data-flow graph,
where illumination information flows between LightOps
that form the nodes of a directed and possibly cyclic
graph. The graph starts at the light sources defined in the
scene, connects the LightOps and ends at nodes that rep-
resent the illumination solution computed by the graph.

Because different algorithms work in terms of dif-
ferent representations of illumination, we cannot simply
connect any LightOp with any other. Introducing a com-
mon unified representation is no option here. Instead,
each of our LightOps maintains a list of illumination rep-
resentations that it can take as input or may generate as
output. Commonly used representations are point sam-
pled radiance values or a Haar-wavelet representation of
irradiance on surfaces.

With this approach, we can guarantee that connections
between LightOps are meaningful and efficient. Because
an upstream and a connected downstream LightOp agree
on a common representation, the actual flow of informa-
tion can be made very efficient, introducing almost no
overhead compared to a more traditional, monolithic ap-
proach. In our experiments the overhead was always well
below 5%. Using a visual programming technique, new
Lighting Networks can interactively be created as shown
in Figure 1.

2.3 Converter LightOps

In cases where we want to connect two LightOps that
do not share a common representation, we introduce the
concept of a converter LightOp. In contrast to a propa-
gator LightOp, a converter does not actually perform any
simulation of light transport. It simply converts between
two different representations of illumination, taking one

0|

Caustic Maps
Combine

DE

Density Estimation
Direct Light
|G Cache

1G Interpel

I1G Sampler
Inventor
KdPhoton
NNDE

LightMet Editor by McStammi
v

iy ‘Configuration windows

M Direct Light i‘

shadow mode CnOffShadow Default

area samples ’—I ijl Default

trace cones | Default

| Caustle Maps ﬂ

ok |
L4

W PS-=QT

min Power

0 I
min Area [10 4 Detaun
o |
Default
Detault
[001 5 Default
[100 4 Detault

W Bounded Rad.

oracle type BOLUNDED
norm type L1
oracle threshold

partial vis. factor

;| min area

Particle Tracer

N]
& LightOps; 1 selected; 5 lllumR Path Tt

| max ineranons P Al umiaun

Figure 1: The user interface for creating new Lighting Networks using a visual programming approach. A Network
with its LightOps and their input and output representations are displayed. Each LightOp can be configured using the

user interface components on the right.

as input and supplying the other as output. In the con-
text of the operator notation above, this is equivalent to a
basis transformation of L.

It turns out that this converter concept is very powerful
and subsumes a lot of processing that is otherwise hid-
den deep inside current algorithms. For example density
estimation algorithms (discussed in more detail in Sec-
tion 5.1) almost exclusively process raw photon hits and
convert them into a more useful representation. Making
these conversions explicit allows for reusing them eas-
ily in other combinations of LightOps, as well as for op-
timizing, redesigning, or replacing each of the different
converter LightOps separately.

Another example is the conversion between a specific
finite element basis (e.g. piecewise constant) to smoother
and thus visually more pleasing representation (e.g. using
piecewise linear interpolation). By separating the conver-
sion from the propagation of light, we can use the same
converters with any of the propagation LightOps (e.g.
classical, hierarchical, wavelet, and clustered radiosity,
etc.). The same is true for any new and improved con-
verter.

2.4 Processing of Lighting Networks

The processing of a Lighting Network actually starts at
the result nodes of the graph. Whenever illumination in-
formation is required by a renderer, these LightOps are
accessed. The request is then processed by each LightOp
usually recursively requesting illumination informations
from those LightOps connected to its input. Thus, indi-
vidual requests are processed in a “pull-model”. How-

ever, there are also some LightOps that operate in “push-
mode”, requiring some preprocessing of their input data
before individual requests can be processed. Examples of
such processing are the solution of a finite-element sys-
tem or the initial tracing of photons from light sources.
This kind of preprocessing is performed by a special re-
cursive preprocessing request [20].

2.5 More Flexibility

While this idea of a network of algorithms may seem like
an unnecessary complication compared to a single multi-
pass algorithm, it offers a lot of flexibility that we are
going to use to our advantage. This added flexibility may
also be directly exploited by a user of a lighting simu-
lation system by adjusting the lighting simulation algo-
rithm for a specific scene or visual effect. Also note, that
all of this additional flexibility comes at almost no com-
putational costs [20].

Lighting Networks allow for using different algo-
rithms for different parts of the scene. By assigning spe-
cific algorithms to only some parts of the scene, we
can tune the simulation algorithm for speed, accuracy,
or may achieve a special effect with a particular com-
bination of algorithms. Using tags assigned to surfaces,
each LightOp operates only on some tagged subsets of
the environment. One subset is used for input (i.e. light
sources for this particular algorithm), one for reflecting
light, and a third subset indicating where illumination
output should be computed. Of course, these subsets may
overlap.

One application of this feature is to restrict the radios-

ity computation to only some large surfaces in an envi-
ronment thus ignoring small details. However, the aver-
age ambient illumination computed by radiosity is ap-
plied to the ignored surfaces. This is a rough approxima-
tion, but can result in much faster computations.

This concept also allows for restricting particular
costly algorithms to those parts of the environment,
where their effects are most noticeable. A more detailed
discussion of this flexibility can be found in [20].

In this paper, we concentrate on exploring the benefits
of this flexibility for designing new lighting algorithms
by combining the basic building blocks in new and some-
times unusual ways.

3 Global Propagation LightOps

The propagation LightOps that are presented in the fol-
lowing section are derived from our previous work in de-
signing lighting algorithms. Revisiting these algorithms,
it became apparent that many of them were build on only
four basic propagation techniques, which are presented
below.

It is an interesting theoretical result that only four
propagators cover the requirements of a wide variety of
lighting techniques. The major difference between most
techniques is in the specific processing of the raw illumi-
nation data and its conversion into other representations.
These issues are discussed in Section 4.

While the propagation operators are global in the
sense that they transport light through the entire scene,
the converters require only local operations. This is an
interesting distinction and has important consequences:
Only propagators need to deal with the complex issues
of visibility. Isolating these difficult issues into separate
operators allows to handle them once and optimize them
for the specific propagation method used, e.g. using par-
ticular acceleration methods and data structures. On the
other hand, converters are purely local algorithms, which
simplifies them considerably. This will become apparent
in Sections 4 and 5.

3.1 Direct LightOp

One of the fundamental propagation algorithms is com-
puting the direct illumination at a point in the environ-
ment from a number of point and area light sources. The
Direct LightOp only operates on a pointwise representa-
tion of illumination, both for input and for output. For
each receiving point in the environment it provides an ir-
radiance value as well as a set of incident radiance sam-
ples. These values are computed by requesting illumina-
tion information from point light sources as well as point
sampling the radiance emitted by area light sources. This
sampling adapts according to the solid angle of the light
source and the received power. Shadow rays are used to

compute the illumination incident at the receiving sam-
ple.

The Direct LightOp will use the primary light sources
in the scene if no other LightOp is connected to it. Oth-
erwise, it uses the data provided on its input to compute
the illumination from these secondary area light sources.
This could, for example, be used to implement a brute
force final gathering technique if connected to the output
of a radiosity LightOp.

3.2 Radiosity LightOp

Another fundamental building block in our tool-box is
the computation of illumination due to diffuse inter-
reflection using one of the well-known finite element ra-
diosity algorithms. Almost all of our radiosity algorithms
exclusively take a piecewise constant representation of ir-
radiance on surfaces as input, so that separate converter
LightOps are required to obtain this representation. As a
result, these radiosity algorithms do not have to deal with
the issues of adaptively sampling primary point and area
light sources that may have complex emission character-
istics, e.g. due to using RenderMan light source shaders.
This is left to the Direct LightOp and a converter that
generates a piecewise constant representation (see Sec-
tion 4 for more details).

3.3 ParticleTracer LightOp

An important class of algorithms uses some form of par-
ticle tracing for computing illumination in the environ-
ment [2, 3, 11, 15, 14, 17]. We use the ParticleTracer
LightOp to provide the basic functionality for these algo-
rithms. Similar to the Direct LightOp, the ParticleTracer
either uses the primary light sources or the secondary
light sources from its input for generating starting con-
figurations for virtual photons. These photons are then
traced through the environment until they are absorbed,
recording the hit points of photons on surfaces. The pa-
rameters of the LightOp can be adjusted to obtain the re-
quired set of photons, e.g. for caustics by only allowing
reflections on specular surfaces.

As output the ParticleTracer simply provides a se-
quence of photon hits together with associated data at
these points. Except for the sequential generation of par-
ticle hits, no other, possibly more efficient access meth-
ods are implemented. Those are provided by specific
converters, some of which are described in Section 5.

3.4 Monte-Carlo Path-Tracing

The PathTracer LightOp is yet another basic algorithm
employing Monte-Carlo techniques but in the reverse
light direction. It again uses either the primary light
sources in the scene or the illumination provided as in-
put. They are sampled by stochastically casting rays into

the environment from each sample point for which illu-
mination is requested by a down-stream LightOp. In its
illumination request, the down-stream LightOp can pro-
vide information on the required sampling density. As
output the LightOp provides a set of incident sample di-
rections with the radiance from that direction. By select-
ing a different illumination representation provided by
the PathTracer, each sample may also contain other sam-
pling data such as the distance to the emitting surface.

This LightOp may be used directly, simulating illu-
mination using simple hemispherical path-tracing, but it
may also generate single radiance samples from a spe-
cific direction, or can be used to generate sample sets of
the environment for use by other algorithms. An exam-
ple for the latter use is the Irradiance Gradients algorithm
(see Section 5.3).

3.5 Discussion

Because each of the described propagation LightOps
computes different light paths through the scene, the four
propagation LightOps already cover the requirements of
a wide range of illumination algorithms. However, there
are some algorithms which would be difficult to map to
Lighting Networks as they require too much communi-
cation between the different modules.

So far only illumination information is propagated in
Lighting Networks. However, some form of importance
is already used for requesting illumination from the Path-
Tracer and this approach could be extended also to other
LightOps.

4 TIllumination Representations and Converters

In the following we present some of the more important
illumination representations used in our Lighting Net-
works and discuss associated converters.

Point Sampling (PS) A point sample describes the in-
cident illumination at a particular point in the envi-
ronment. It provides the irradiance and a set of di-
rectional samples containing the incident radiance.

Quad-Tree (QT) A quad-tree represents irradiance hi-
erarchically using Haar-wavelets on a unit-square
domain. The conversion from a quad-tree represen-
tation to point sampling is trivial, simply returning
the value of the piecewise constant function at the
location of the sample.

In the reverse direction, we use a user specified ini-
tial sampling on the surfaces for estimating the irra-
diance. Using a given error threshold, we perform a
wavelet compression on the data set using the Haar
basis. These conversions also account for the map-
ping between parametric space to 3D.

TriMesh A TriMesh is a triangle mesh in parametric
space that provides irradiance values at its vertices.
These are linearly interpolated within the triangles.
Converters exist that perform linear interpolation in
a quad-tree and output the results as a TriMesh. An-
other converter can point sample the TriMesh.

Photons The photon illumination representation is
mainly used for the output of the ParticleTracer
LightOp. Several slightly different illumination rep-
resentations exist for describing photon hits in the
scene. They differ in the data associated with each
hit. This representation can then be converted into
point sampled irradiance values by using density es-
timation LightOps (see Section 5.1).

Many of the algorithms presented in the next section
use special illumination representations for passing illu-
mination information between different LightOps that to-
gether implement the algorithm. These internal illumina-
tion representations will be discussed in the examples be-
low. While they are currently only used by LightOps of a
specific algorithm, they may also be used by other Light-
Ops, once they proved to be useful in other contexts.

4.1 WireTap LightOps

A special form of conversion LightOps are WireTap
LightOps. These LightOps do not even change the illumi-
nation, but allow for accessing the data that flows through
the operator. Most often these LightOps are used to ex-
port or import the illumination data in various formats.
One example for their use is as a cache of data values
or as a wire tapping method during the development of
Lighting Networks.

An important use of this kind of LightOps is for gener-
ating intermediate representations of a solution. For ex-
ample, a special Openlnventor or VRML LightOp can
write to a file or display directly the geometric models of
the scene illuminated by the data flowing through it (see
Figure 4). The effect of individual LightOps in a network
can simply be viewed by inserting such a wire tap be-
fore and after the respective LightOp. Difference images
are generated by a LightOp that computes the difference
in the illumination coming from the two wire taps. This
simple way of accessing and displaying intermediate re-
sults can speed up the development of new algorithms
dramatically.

5 Examples

The following section presents and discusses some of
the lighting simulation algorithms that have been imple-
mented using the Lighting Network approach. Our aim is
to present in several examples the benefits of designing
algorithms as a decomposed set of individual LightOps.

The most important benefits of using Lighting Net-
works are

o flexibility for (re-)combining different algorithms in
order to simulate new illumination effects,

e distinction between the global complexity of prop-
agation operators and the reduced local complexity
of converter LightOps,

o simplicity with which existing algorithms can be
reused in different contexts,

o better understanding of different algorithms by
looking at the particular usage of basic simulation
algorithms and transformations of their results,

e potential for optimizing each of the algorithms sep-
arately and for providing specialized versions of
them for different environments.

5.1 Density Estimation

An off-line density estimation technique has been pre-
sented by Shirley et al. [17]. This technique is inherently
a multi-pass process. It consists of a lengthy particle-
tracing pass that stores the photon hits off-line. These
photons are then sorted by which surface they hit and
density estimation is performed on each surface, which
reconstructs a piecewise linear representation (repre-
sented by triangle meshes) of the irradiance on each sur-
face. A final simplification pass compresses the represen-
tation by reducing the number of triangles, while main-
taining a high quality representation.

Part. Tracer SurfSort SurfaceDE

PS [Pho hot | [Phof hot Tri
Part. Tracer KdPhoton
Ps] [Pho hot Pho Phot | PS

Figure 2: The mapping of the global and nearest-
neighbor density estimation algorithms to Lighting Net-
works. Both implementations act as converters that reor-
ganize and convert input data provided by the Particle-
Tracer into more suitable representations.

Another density estimation algorithm has been used
by Jensen [12]. It uses a two-pass approach that differs in
the density estimation phase, where it uses an on-the-fly,
nearest-neighbor (NN) algorithm. An improved density
estimator has also been presented in [13].

Both the Shirley and Jensen algorithms can directly
be mapped to suitable Lighting Networks as shown in

Figure 2. In both cases the same ParticleTracer LightOp
performs the initial distribution of the photons from the
light sources.

The Lighting Network for the PhotonMap algorithms
consists of the NN-Density-Estimator (NNDE) LightOp
that performs the density estimation based on the N
nearest photon hits it receives from the KDPhotonTree
LightOp. In the preprocessing phase, this LightOp se-
quentially requests the photon hits from the Particle-
Tracer and organizes them in a kd-tree for faster access
during the rendering and estimation phase.

The density estimation algorithm by Shirley et al.
is implemented using three cooperating LightOps: The
PhotonSurfSort LightOp sorts the photon hits by the sur-
faces that were hit. This sorted data is then made avail-
able to the SurfaceDE LightOp that requests them a sur-
face at a time and performs the density estimation for
each surface separately. The result of the density estima-
tion phase is represented as a TriMesh. This TriMesh is
then made available to the TriMeshReducer, which uses
a mesh reduction algorithm for compressing the TriMesh
by eliminating unnecessary triangles.

Please note, that most computations performed by the
density estimation LightOps are done by converters. New
algorithms can easily replace either the NNDE or the
SurfaceDE operators for improving the illumination re-
sults, while the rest of the network would stay the same.
It is even possible to have different density estimation al-
gorithms adapted to different parts of the scene.

5.2 Composite Lighting Simulation

This example illustrates the potential of the new method
by combining several LightOps to form a composite
lighting simulation. Several of the algorithms used in this
example are candidates for being replaced by other (pos-
sibly better) algorithms, some of which will be described
in subsequent sections.

In this example, we use three propagation and four
converter LightOps (see Figure 4): Both the Direct
LightOp and the LightOps computing caustic light paths
compute illumination from the primary light sources.
The Caustic LightOps uses the particle tracing approach
for simulating caustic light paths [12]. The photons are
traced from the light sources only via specular reflection
and are deposited once they hit a diffuse surface where
NN density estimation is performed.

In order to compute the diffuse indirect illumination,
the output of the Direct and Caustic LightOps are con-
nected to the PStoQT converter. This converts the sum of
direct and caustic illumination into a quad-tree represen-
tation as described above, which is then used as input for
the radiosity LightOp. After calculating the indirect illu-
mination, the output quad-tree is linearly reconstructed

Figure 3: Three spotlights emitting white light housed in
colored parabolic reflectors. The direct and caustic illu-
mination can clearly be seen on the bottom surface (top).
The center images shows the indirect illumination due to
this illumination, while the full simulation is shown at
the bottom. The Lighting Network used, is the same as
in Figure 4.

with the Gouraud LightOp converter for achieving a bet-
ter visual quality by interpolating the piecewise constant
illumination values. As a last step, the indirect illumina-
tion is also added to the final solution.

The new algorithms allow us to include caustic illumi-

PartTracer
Photons

Photons

KdPhotonTree
KdTree

KdTree

NNDE

[Fs]

Direct

Rad. Indirect

QT
v
L ar |
Gouraud
PS

Figure 4: A Lighting Network computing diffuse indirect
illumination for both direct and caustic illumination. The
caustic illumination is due to a light source with a semi-
cylindrical reflector focusing the light onto the floor. The
figure shows the network with the different operators.
Some wire-tap LightOps are visualized as images and
show intermediate illumination results.

nation into the radiosity simulation (see Figure 4). Fig-
ure 3 shows the same illumination effect more directly in
a simpler environment.

Direct Light Path Tracer IG Sampler

IG Cache IG Interpol

emi | [IG

ps | [P s | [Hem

Figure 5: The Lighting Network for implementing Irradiance Gradients. The sampling, caching, and interpolation

steps are implemented in separate LightOp.

5.3 Irradiance Gradients

Irradiance Gradients is a well-known technique for com-
puting good estimates of the indirect irradiance in an en-
vironment [27, 26, 25]. It is a hybrid method that uses
path tracing for propagating illumination, while interpo-
lation, caching and sampling are implemented as con-
verters.

5.3.1 Mapping to a Lighting Network

Figure 5 shows a fine grained mapping of this algorithm
to a Lighting Network using four different LightOps. The
[Glnterpolator is the main algorithm that performs the
interpolation of nearby radiance samples it requests from
its input LightOp. This /GCache LightOp either returns
nearby cached samples or requests a new sample from
the /GSampler in case too few samples are available. The
IGSampler in turn uses the generic PathTracer to trace
the rays in order to sample the incident radiance field.

The IGSampler LightOp computes the irradiance and
gradient values for the sample and returns them to the IG-
Cache. The PathTracer is connected to an input LightOp,
which determines one part of the illumination at each
point hit by the PathTracer (direct illumination). The
PathTracer is also connected back to the IGInterpola-
tor for recursively obtaining the indirect illumination in
the environment. This cycle in the Lighting Network el-
egantly represents the recursive structure of this algo-
rithm.

While the three specific LightOps could also be com-
bined into a single LightOp, this fine-grained decompo-
sition better supports separate experiments and optimiza-
tion of individual algorithms. We did that with all three
algorithms and were able to improve them, avoiding sam-
pling artifacts (light and shadow leaks) in the IGSampler,
speed up cache access in the IGCache, and experiment-
ing with other interpolation techniques in the IGInterpo-
lator.

5.3.2 Final Gathering

The new implementation of Irradiance Gradients has also
been used in combination with other LightOps. By elim-
inating the recursion in Figure 5, the algorithms simply

performs a single gathering step of incident illumination.
Due to caching and interpolation, the algorithm is very
well suited as a “final gathering” step for smoothly in-
terpolating the indirect illumination computed by other
algorithms such as a coarse radiosity or density estima-
tion simulation. Used this way, Irradiance Gradients uses
only a small fraction of the time of traditional final gath-
ering methods. Also, the Irradiance Gradients approach
is almost independent of image resolution.

6 Conclusion

In this paper, we introduced a new approach for design-
ing lighting simulation algorithms. Instead of implement-
ing large monolithic modules that are responsible for all
aspects of illumination in a scene, the Lighting Networks
approach provides the infrastructure for connecting mul-
tiple small algorithms in the form of a data-flow network.
The benefits of this approach were demonstrated with
several examples.

Probably the most important aspect of Lighting Net-
works is the better insight offered by decomposing the
lighting algorithms into global propagation and local
conversion operators. This decomposition allows for op-
timizing and replacing individual components of lighting
algorithms in order to improve their speed or accuracy.

It turned out, that already a small number of basic
propagation operators supports many existing lighting al-
gorithms, which spend most of their computation time in
converters. This has been a somewhat surprising result,
which could change the way we view the development
of lighting algorithms in the future.

Lighting Networks seem less suited for implementing
tightly integrated algorithms that require a lot of com-
munication between modules. However, these can still
be integrated as a more complex single LightOp.

More complex LightOps probably require some form
of hierarchical organization of LightOps that allow to
treat a group of LightOps as a single macro LightOp.
We are currently implementing the full Photon-map al-
gorithm described by Jensen [12]. This requires a non-
trivial amount of LightOps and would benefit from
Macro LightOps to make it easier to handle. However,

most of the LightOps required for this approach have al-
ready been described in this paper.

7 References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

Gregory D. Abram and Turner Whitted. Building block
shaders. Computer Graphics (SIGGRAPH ’90 Proceed-
ings), 24(4):283-288, August 1990.

A. Appel. Some techniques for shading machine render-
ing of solids. AFIPS 1968 Spring Joint Computing Con-
ference, pages 3749, 1968.

James Arvo. Backward ray tracing, developments in ray
tracing. ACM Siggraph ’86, Course Notes, pages 259—
263, 1986.

James Arvo, Kenneth Torrance, and Brian Smith. A
framework for the analysis of error in global illumination
algorithms. Computer Graphics (SIGGRAPH ’94 Pro-
ceedings), pages 75-84, 1994.

Shenchang Eric Chen, Holly E. Rushmeier, Gavin Miller,
and Douglas Turner. A progressive multi-pass method for
global illumination. Computer Graphics (SIGGRAPH 91
Proceedings), 25(4):165-174, July 1991.

Michael F. Cohen and John R Wallace. Radiosity and
Realistic Image Synthesis. Academic Press, 1993.

Robert L. Cook, Tom Porter, and Loren Carpenter. Dis-
tributed ray tracing. Computer Graphics (SIGGRAPH "84
Proceedings), 18(3):137-145, July 1984.

C. M. Goral, K. E. Torrance, and D. P. Greenberg.
Modeling the interaction of light between diffuse sur-
faces. Computer Graphics (SIGGRAPH ’84 Proceed-
ings), 18(3):212-222, July 1984.

Steven J. Gortler, Peter Schroder, Michael Cohen, and
Pat M. Hanrahan. Wavelet radiosity. Computer Graph-
ics (SIGGRAPH ’93 Proceedings), 27:221-230, August
1993.

Pat Hanrahan, David Salzman, and Larry Aupperle. A
rapid hierarchical radiosity algorithm. Computer Graph-
ics (SIGGRAPH 91 Proceedings), 25(4):197-206, 1991.

Paul Heckbert. Adaptive radiosity textures for bidirec-
tional ray tracing. In Computer Graphics (SIGGRAPH
"90 Proceedings), volume 24, pages 145-154, aug 1990.

Henrik Wann Jensen. Global illumination using photon
maps. In Xavier Pueyo and Peter Schroder, editors, Ren-
dering Techniques *96 (Proceedings Seventh Eurograph-
ics Workshop on Rendering), pages 21-30. Springer, June
1996.

Karol Myskowski. Lighting reconstruction using fast and
adaptive density estimation techniques. In Julie Dorsey
and Ph. Slusallek, editors, Rendering Techniques ’97,
pages 251-262. Springer, June 1997.

S. N. Pattanaik. Computational Methods for Global 1llu-
mination and Visualization of Complex 3D Environments.
PhD thesis, Birla Institute of Technology & Science, Pi-
lani, India, February 1993.

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

S. N. Pattanaik and S. P. Mudur. Computation of global
illumination by Monte Carlo simulation of the particle
model of light. Third Eurographics Workshop on Ren-
dering, pages 71-83, May 1992.

H. E. Rushmeier and T. E. Torrance. The zonal method
for calculating light intensities in the presence of a par-
ticipating medium. Computer Graphics, 21(4):293-302,
1987.

Peter Shirley, Bretton Wade, Philip M. Hubbard, David
Zareski, Bruce Walter, and Donald P. Greenberg. Global
illumination via density-estimation. In Rendering Tech-
niques '95 (Proceedings Sixth Eurographics Workshop on
Rendering), pages 219-230. Springer, June 1995.

Francois Sillion. A unified hierarchical algorithm for
global illumination with scattering volumes and object
clusters. IEEE Transactions on Visualization and Com-
puter Graphics, 1(3), September 1995.

Francois X. Sillion and Claude Puech. A general
two-pass method integrating specular and diffuse reflec-
tion. Computer Graphics (SIGGRAPH ’89 Proceedings),
23(3):335-344, July 1989.

Philipp Slusallek, Marc Stamminger, Wolfgang Heidrich,
Jan-Chrisitan Popp, and Hans-Peter Seidel. Composite
lighting simulations with lighting networks. IEEE Com-
puter Graphics and Applications, 18(2):22-31, March
1998.

Marc Stamminger, Philipp Slusallek, and Hans-Peter Sei-
del. Bounded radiosity — illumination on general surfaces
and clusters. Computer Graphics Forum (EUROGRAPH-
ICS ’97 Proceedings), 16(3), September 1997.

Eric Veach and Leonidas Guibas. Bidirectional esti-
mators for light transport. In Photorealistic Rendering
Techniques (Proceedings Fifth Eurographics Workshop
on Rendering), pages 145-167, Darmstadt, June 1994.
Springer.

Eric Veach and Leonidas J. Guibas. Metropolis light
transport. Computer Graphics (SIGGRAPH ’97 Proceed-
ings), pages 65-76, aug 1997.

John R. Wallace, Michael F. Cohen, and Donald P. Green-
berg. A two-pass solution to the rendering equation: A
synthesis of ray tracing and radiosity methods. Computer
Graphics (SIGGRAPH ’87 Proceedings), 21(4):311-320,
July 1987.

Gregory J. Ward. The RADIANCE lighting simulation
and rendering system. Computer Graphics (SIGGRAPH
"94 Proceedings), pages 459-472, July 1994.

Gregory J. Ward and Paul S. Heckbert. Irradiance gra-
dients. In Third Eurographics Workshop on Rendering,
pages 85-98, May 1992.

Gregory J. Ward and Francis Rubinstein. A ray trac-
ing solution for diffuse interreflection. Computer Graph-
ics (SIGGRAPH ’88 Proceedings), 22(4):85-92, August
1988.

