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Abstract

Ray tracing is inherently a very time consuming
process. There have been a variety of techniques de-
veloped for reducing the rendering time. While using
space subdivision techniques, the object space is di-
vided into a set of disjoint voxels; and only those ob-
jects are checked for intersection with the ray which
pierce the voxels along the path of the ray. As the
grid size is increased in an attempt to reduce the
number of objects encountered along the path of the
ray, more empty voxels are encountered along the
path. In other words, considerable rendering time
could be invested in moving from one empty voxel to
another empty voxel. The proximity clouds method
uses distance transformations to identify the empty
regions, and combined with the 3DDA grid traver-
sal (SEADS) technique, has been shown to be the
fastest grid traversal technique available today.

In this paper, we present two further improve-
ments to the proximity clouds method — called the
Directed Safe Zones (DSZ) and the Dual Extents
(DEs). We have implemented four methods for our
comparison: SEADS (3DDA), proximity clouds, Di-
rected Safe Zones (DSZs), and Dual Extents (DEs).
We present both the theoretical and statistical anal-
ysis of the four methods. We show that DSZs and
DEs surpass the performance of both the proxim-
ity clouds and SEADS implementations. The DSZs
method usually outperforms the Dual Extents im-
plementation, except when the topology of the scene
favors the Dual Extent method.

Keywords: Rendering, ray tracing, grid traversal,
space subdivision.

1 Introduction

Ray tracing is one of the most popular methods to
create photorealistic images. Rays start from the eye
or camera position and traverse through the scene
to find the nearest intersection point. As the ray
traverses through the scene it might intersect with
objects, causing it to reflect or refract. Every time
an intersection occurs the ray is recursively split into
several new rays representing the reflection and re-
fraction of the ray. Every pixel of the final image is
rendered separately by casting a ray originating at
the eye and passing through that pixel [1]. There
are many techniques for reducing the image genera-
tion time [2, 3, 4, 5, 6, 11, 16, 17, 18, 19]. The space
subdivison techniques are particularly useful as the
nearest intersection point can be found without the
need for testing intersection with all the objects. In
this paper, our aim is to speed up the ray tracing
process by quickly bypassing blank areas while using
the grid method of space subdivison.

In space subdivision techniques, the space occu-
pied by the scene is subdivided into small regions
or vozels. Rather than checking a ray against all
objects, we determine whether the region through
which the ray is currently traversing is occupied by
any object. If the region (voxel) is empty, the ray can
pass through the region without looking for intersec-
tions. As shown in Figure 1(a), objects 4 and B
are tested against intersection while object C'is not.
Several methods have been developed based on this
principle. Some of them are: uniform spatial subdi-
vision (SEADS, ARTS) [12] and the octree method
[10].

The uniform spatial subdivision (SEADS) [12]
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Figure 1: a) Grid method, b) Proximity (circular)
cloud, ¢) city-block Proximity Cloud

method involves preprocessing of the scene to create
a grid data structure (SEADS — spatially enumer-
ated auxiliary data structure). Due to the uniform
subdivision, the use of SEADS enables very fast ray
traversal from one voxel to another. The ray traver-
sal is realized by using the 3DDDA (3 Dimensional
Digital Differential Analyzer) [12]. In this paper, our
implementation for grid traversal is similar to Cleary
and Wyvill [8] method and is not explained here due
to space limitations.

When an oct tree spatial subdivision method is
used for space-partitioning, each region (also called
a voxel) can vary in size, depending on the topology
of the scene. In this method, large regions of empty
space or large regions that contain a single object are
not subdivided to the same extent as areas contain-
ing several small scattered objects.
vantage of octree is that the memory requirements
are usually lower compared to a uniform subdivision
scheme. Although the empty regions are bypassed
quickly, the main disadvantage is that the octrees
can lead to extremely unbalanced trees which can
incur high ray traversal cost when the scene is pop-
ulated with objects. The 3DDA ray-traversal is usu-
ally faster in comparison to the oct tree ray traver-
sal, as integer math used during the ray-traversal
more than compensates for the larger voxel size in
the oct tree method. Fujimoto and Iwata [12] devel-
oped the ARTS method which uses a combination of
grid traversal (SEADS) and an octree to speed up
the ray tracing. The ARTS method was empirically
demonstrated to be better than the octree method
[12, 14].

To further reduce the number of objects encoun-
tered along the path of the ray, the size of the voxels
could be decreased by increasing the grid size. How-
ever, rendering time for the grid (SEADS) implemen-
tation increases when grid size is increased (e.g. see
Tables 3, 5, and 7). This is because, there are more
(smaller) empty voxels which the ray must traverse.
To effectively bypass these empty regions during ray
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traversal, the oct tree preprocessing technique is used
in both the ARTS method [12] and the Modified Slic-
ing Extent Technique (MSET) [14]. However, oct
trees are inherently too constrained because of their
top-down, pyramid [13] approach of isolating blank-
regions. A better technique for isolating blank re-
glons is the flat pyramid approach of [13] which uses
distance transformation. Instead of going to the next
voxel, the ray is moved a safe (larger) distance to by-
pass the empty region quickly. In the section below,
we explain the idea of distance transformation. More
details are in [13].

2 Distance transformations

Consider a two-dimensional grid of black and
white (unoccupied) pixels. How do we calculate the
distance from every white (unoccupied) pixel to the
closest black (occupied) pixel? A very simple but
computationally expensive approach is to start at
every white (unoccupied) pixel and recursively scan
all directions until we find a black pixel. A faster
approach is described by Borgefors [9] based on the
distance transforms. A distance transformation con-
verts a binary image of featured (black) and non-
featured (white) pixels into a distance map where all
non-featured pixels hold a distance value to the near-
est featured pixel. In the field of ray tracing, we can
use distance maps to represent distances in between
voxels. Voxels containing objects are considered fea-
tured and empty voxels are non-featured.

Different metric systems can be used when cal-
culating the distance maps. The two most com-
monly used metrics are the Buclidean-metric (D, =

(Az)? + (Ay)?), and the city-block metric (D¢ =
Az + Ay). The advantage of using city-block metric
in favor of the Euclidean metric, is that the square-
root operation is computational expensive and can
be avoided if city-block metric is used. The disadvan-
tage is that it is less accurate but it is still a decent
approximation of the Euclidean distance. Figure 1
(b and c) show the benefit of using Euclidean and
city-block distance approximation during ray trac-
ing.

Generating a city-block distance map: The
global distances of the cell grid are approximated
by propagating local distances over the grid. The lo-
cal distances are the interdistances between adjacent
cells. Using the city-block metric, the interdistances
are always 1 since the cells have unit size and are
mapped onto an integer grid. Before we start to



propagate, the value of all the grid-cells are preset
such that empty cells are initialized to infinity and
cells containing objects to zero.
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Figure 2: City-block distance mask.

The distance mask is propagated twice over the
grid, once from left to right and bottom to top (Fig-
ure 4(a)) and a second time from top to bottom and
right to left (Figure 4(b)). During the propagation,
the global distance of the empty cells are updated by
taking the minimum value of the current cells global
distance and the propagated distance value, as fol-
lows:

vi,j = minimum(vi,]- s M[k, l] + Ui+k,j+l)

Where v;; is the current distance value of the cell
at position (¢,7) and M[k,I] is the mask value at
position (k,1). This mask is split into a forward mask
and a backward mask (Figures 2 and 3). During both
forward or backward calculations, the mask’s entry
with zero value corresponds to the (i,j)th entry.
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Figure 3: Forward (k,! = 0,-1) and Backward
(k,1=0,1) distance Mask.

Initially, occupied (black) voxels are assigned a
value of zero, and remaining un-occupied (white)
voxels are assigned a value of oo (or a suitably large
value) (See Figure 4). For the first propagation, dis-
tances are calculated using the forward mask. This
propagates global distances from voxels already vis-
ited. When we propagate the second time, we use the
backward mask to find the distance values. Basically,
we are propagating the global distance by adding the
local distance mask to the values of voxels previously
visited. Figure 4(a) and (b) show the values after the
first and the second propagation.

3 The Proximity Clouds Method

The proximity clouds method [13] uses distance
maps to speed up the grid-traversal of the cell space.

(a) (®)

Figure 4: Distance map after first (a) and second (b)
transformation.

It uses the fact that most of the cells of the grid
contain no objects, e.g. when the level of subdivision
is reasonably high and the scene has some degree of
spatial coherence. The empty cells are used to store
a distance value to the nearest non-empty cell. This
distance defines a free-zone wherein no other objects
reside and is also called a proximity cloud. Due to
this safe-zone surrounding the cell, it is safe to jump
or skip over the empty cells along the rays direction
without missing a possible intersection with other
objects. Cohen and Sheffer [13] show that city-block
metric is the most effective, both in terms of speed
and skipping distance.

Ray traversal using the Proximity Clouds: It
is possible to safely skip over the empty voxels along
the direction of the ray without missing a possible
intersection. Please note that we have implemented
all the methods in three-dimensions, however Figures
in the paper show 2D-examples for simplicity and
clarity. Assume we have a ray R + tR; connecting
two points Ry(z1,y1) and Rz (22,y2). Using the city-
block metric, and algebraic manipulations in [15], we
have

z = 21+ DyCy
Y2 = yi+ chCy
R Rg
Here, Cm = ﬁ, Cy = m, and ch =

Az + Ay. Ry, and Ry, are the x and y components
of the direction, Rg4, of the ray.

Note that it is only possible to proceed with skips
as long we are not in the vicinity of objects. Once the
skip distance falls below a predetermined value, we
switch to the standard face-adjacent traversal in our
implementation. This serves two purposes. First, if
the distance is small, it is more efficient to perform
grid-traversals due to the overhead of the skipping



algorithm. In our implementation, when D, is less
than five, grid traversal is performed (this has proven
to be a good solution for our implementation). Sec-
ond we must avoid skipping beyond the free zone and
therefore the skip value is Dg;-1, forcing a traversal
to be performed just before entering a non-empty
voxel.

Let n be the total number of skips performed.
Then the sum of the total skip distance in the x and
y direction respectively is

Az = Zchz[i], and
=1

Ay = > Dali]
=1

Cohen and Sheffer [13] tested this method on a
discrete! ray tracer, yielding a more than 30% speed-
up of the total execution time. Increasing the num-
ber of voxels will make the proximity clouds algo-
rithm even more efficient compared to just using the
grid (incremental step) traversal, because larger sized
proximity clouds are generated.

In the following Sections, we present two new im-
provements to the basic voxel traversal algorithm.

4 The Directed Safe
Method

Zone (DSZ)

The proximity cloud method does not take the di-
rection of the ray into consideration. The skip dis-
tance is always limited by the proximity distance
even if the ray is facing away from the cell containing
objects. A better approach would be to take advan-
tage of the direction of the ray, and skip a distance
defined by objects located in the direction of the ray.
In R? this will create four zones, one for each edge
of the cell (Figure 5).

These safe zones have a greater average distance
than the proximity clouds. This is true because the
proximity cloud distance can be extracted from the
safe zones distances by taking the minimum of all
distance values. In R3, the algorithm uses six differ-
ent distance values, one for each face of the voxel.
During traversal we need to keep track of which face
the ray will pierce when it leaves the current voxel.
Notice that the skip algorithm is the same as for the

1A discrete ray tracer uses a high resolution voxel grid
where every voxel contains a single, precalculated intersection
point and thereby eliminates the need for intersection tests
during traversal.

(a) (b)
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Figure 5: Directed Safe Zones: a) +x, b) -x, ¢) -y, d)
+y directions

proximity clouds method once we have determined
which distance value to use.

4.1 Directional distance transforms

The algorithm presented in Section 4.1 for creating
distance transform is a linear time algorithm. Two
passes through every voxel meant that the algorithm
was O(N) where N is the total number of voxels in the
grid. In this section we show an efficient algorithm
to generate directional distance transforms using the
city-block metric.

The process of creating a directional distance map
of a cell grid is slightly more complicated than
the non-directional distance maps. In the non-
directional case, we had to scan all cells twice, prop-
agating the minimum sum of all local and global
distances. For the directional case, it is necessary
to extend the scan directions so that it propagates
global distance minimums towards all directions of
interest. In R? we have to scan the cell grid from
four different directions (Figure 6(a-d)): a) Phase
1: Top-to-bottom and left-to-right (D?!). Calculates
negative x-distances and positive y-distances (Figure
6(a)). b) Phase 2: Top-to-bottom and right-to-left
(D?). Calculates positive x-distances and positive
y-distances (Figure 6(b)). ¢) Phase 3: Bottom-to-
top and left-to-right (D®). Calculates negative x-
distances and negative y-distances (Figure 6(c)). d)
Phase 4: Bottom-to-top and right-to-left (D*). Cal-
culates positive x-distances and negative y-distances



(Figure 6(d)).
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Figure 6: Calculation of the directed safe zone, a)
phase 1, b) phase 2, ¢) phase 3, and d) phase4.

Figure 7: Resulting distance map of the directed safe
zone.

Once we have the set of distances, we apply a min-
imum function to each of the cells direction values
obtained by the four scan operations (Figure 7).

Daneg = min(Dgpey, Diney) (1)
Dapos = min(DZy4,5 Dapo,) (2)
Dyney = min(DSneg’ D;neg) (3)
Dypos = mm(D;pos’ Djpos)

Fortunately, we can perform the min operation at
the same time as we propagate the cells. This elimi-
nates the need to allocate extra memory to hold the
distance map of each scan.

The extension to three dimension is trivial. Since
we now have six different directions, we must ex-
tend the four steps above to include 8 steps. Four

in the positive z-direction and four in the negative
z-direction. In other words, we start a scan at each
of the voxels 8 corners and propagate the global and
local distances as before. The complexity of the al-
gorithm is not dependent on the number of objects
in the scene nor the number of voxels containing ob-
jects. It remains linear in terms of the number of
voxel in the grid i.e. O(N) as each voxel is visited at
most 8 times. As expected, directed safe zones use
more memory than the Proximity Clouds method as
six distance values are stored in each of the empty
voxels compared to a single value using proximity
clouds. As discussed in [15], an eight bit represen-
tation of the distance values works well. So we need
only six bytes for storing the entire voxel’s distance
values. A comparison of the actual memory used
during testing is in Tables 1 and 2.

Skipping algorithm: The algorithm to skip over
the safe zones is identical to the one used when skip-
ping over the proximity clouds (Section 3.1). The
problem is to determine which one of the six distance
values to choose. We know that the distance value
is determined by the next face-adjacent cell the ray
visits along its path and therefore we simply choose a
distance value determined by the result of the traver-
sal algorithm. Pseudocodes and other details of the
traversal algorithms are in [15].

5 The Dual Extent Method

The dual extent method tries to find lanes of
empty cells in the scene. Starting with a proximity
cloud, we extend each of the six faces of the cloud
until we hit a non-empty cell. This will allow the
ray to skip a longer distance, especially if the ray is
parallel or close to parallel to one of the coordinate
axes. Figure 8(a) shows the dual extent for only the
upper face of the proximity cloud. In addition to the
skip resulting from the proximity cloud, we can now
skip an additional distance defined by the boundary
of the lane. Using a city-block metric, the length of
the lanes is defined starting at the edge of the prox-
imity cloud and ending at the closest non-empty cell
within the lane boundary (See Figure 8(b)).

Generating the dual extent distance map is a lit-
tle more involved compared to the proximity clouds.
First we start by generating a proximity clouds dis-
tance map to be used as a starting point for the ex-
tents. Now, for each cell of the grid, we find the
extents for each face of the proximity cloud. To help
us find the solution to the problem, we represent the



proximity cloud as a height field. In Figure 8(b), we
show the proximity cloud as a height field originat-
ing at the center of the proximity cloud. The height
of each separate bar is defined by: H[i] = D, — ¢,
where 7 1s the integer distance to the center of the
cloud and D.; is the proximity cloud size. Note that
negative values of HJ[i] indicate that we are outside
the proximity cloud.

The next step is to find the maximum extent of
each bar. That is, how far, in the extent of each bar,
can we skip without missing a non-empty cell? To
find that distance, we scan the entire cell grid and
propagate the distance values column by column to
the closest object. This process is shown in Figure

8(c).

We start by creating a row Reg:[j] to hold the
propagated distance values. In the next step we ini-
tialize each cell of R.;: to infinity, or a value defined
to represent infinity. Then for every corresponding
non-empty cell of the row, we set the distance to zero.
Propagate the distances to the next row by adding
one to each cell. Once we have the distance value
of each column to the nearest object, we can easily
combine this with the height fields of each proxim-
ity cloud to get the final extent. The dual extent
distance in R? can be expressed as:

Dy = Remt[p] - H[z] -1

Where p is the cell index of R, ;; corresponding to <.
Dy, is calculated for every ¢ within the boundary
of the cloud. The final dual extent distance is the
minimum of these values.

The extension to three-dimension requires Rz to
be calculated, not using a row, but a slice of cells.
Each cell of the slice is then combined with the cor-
responding height value of the proximity cloud. Note
that these height fields are a two-dimensional array
of values. We now have:

D = Remt[p: q] - H[z: .7] -1

The pseudocode for generating the dual extents
and other details of the algorithm are not presented
here, and can be found in [15].

Similar to the directed safe zone method, the dual
extents uses a union construct to share the memory
used by the distance values and the object point-
ers. Seven distance values need to be stored in every
empty voxel. These distances, the proximity distance
plus the six extents occupy a total of seven bytes.
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Figure 8: Dual extent: a) height fields, b) and )
row of distance values to the closest non-empty cell
of the same column, d) proximity cloud and column
generated.

Skipping algorithm: What is the greatest distance
we can skip in the direction of the ray when using
the dual extent method? If we simply add the prox-
imity distance and the extent distance together, it is
likely that we end up beyond the extent of the lane.
We know that the sum of the two distances is the
maximum distance a ray can skip if it is parallel to
the lane. As soon as the ray is not parallel to the
lane, the skip distance must be recalculated to fit
the bounds of the lane (Figure 8(d)). Recall from
Section 4.1 that the C; and Cy split a distance S
in ®? into the distances along each axis. The split
distances, let us call them S; and S, are defined by:

S = ch + Dde
Sz = Cpx*xS
S, = C,xS§

where D, and Dy, are the proximity and dual ex-
tent distances respectively. Now if S; or Sy is greater
than D, (depending on the direction of the extent),
we know that we have skipped too far and thereby
we must be outside the bounds of the lane. This
is true because the lane is defined as an extension
of the proximity cloud and any perpendicular dis-
tance greater than D., must leave us outside the



lane. Since D.; usually is very small compared to
Dy, most of the time we would have to recalculate
S in our implementation so that that we do not skip
beyond the wall of a lane. The overhead of testing
whether the ray skipped too far or not is therefore
wasted since, in most cases, we are forced to recal-
culate S. A better solution is to always recalculate
S, no matter how small it is. The total performance
would most certainly increase since most of the times
it would have to be recalculated anyway.

Assume we have a proximity cloud of size D.;, ex-
tended by a dual extent in the positive y-direction of
size D4, (Figure 8d). The new skip distance S’ is:

Dg—1
S ===
|Cs|
In R2 the new distance is:
Dg—1
s =—= _— _
(ICz| + |C])

S’ must never be greater than D.; + Dy, thus

ch )
(IC=] + [C-1)

Notice that we have to calculate S” using the prox-
imity distance subtracted by one. This might seem
a little strange but it is caused by the fact that we
are using integer values to represent the cell values.
As the ray traverses the scene it always holds an ac-
cumulated error-term. Since the distance maps are
calculated using the center of the cells the error-term
may cause the ray to miss a corner of a cell. The skip
S’ can now be performed.

S" = MIN(Dg — 1+ Dg.,

6 Theoretical analysis of logarithmic
city-block distance metrics

Using a city-block metric D.;, we can create dis-
tance transforms mapped onto an integer grid. As-
sume that instead of using the set of all positive inte-
gers Z1 we use a subset of these integers which have
the form 2". These distances, denoted by Dy can
be expressed as: Dy = 2lioga(Des)]

These logarithmic distances will make the skip dis-
tance shorter than before since Dj;; < Dg. The
total number of skips that has to be performed are
therefore higher. The main advantage is that a skip
operation can be performed by using fast bit shifts
instead of expensive multiplications. In addition,
memory savings could also be realized. A detailed
discussion on the logarithmic distances is in [15].

7 Implementation Platform  and

Scenes used for testing

Because of the space limitations, we would only de-
scribe the main points of our implementation here,
for details please refer to [15]. We used the DKB-
Trace package written in C by David Buck for im-
plementing all the four methods: SEADS, proximity
clouds, DSZ, and the dual extent method. All cod-
ing was done using Silicon Graphics (Silicon Graph-
ics Indy 4600 PC, 100 MHZ, Entry graphics, 64 MB
RAM, 4GB HD). All images are 512 x 512.

Four different scenes were used during perfor-
mance testing: a) The first scene is called Ran-
dom which is a scene with 2662 randomly sized and
placed, colored spheres. This scene has very lit-
tle spatial coherence. b) The second scene is called
Lanes where 6400 small spheres are placed forming
a cube of lanes. ¢) The third scene is called Flakes
which has 1559 spheres in geometric formation. This
scene has a lots of empty space in between the ob-
jects. d) The fourth scene is Cars where 1715 trian-
gular patches are used.

For comparison with our results, it might be in-

teresting to know that using when intersections are
performed for all objects in the scene for every ray,
the Random Scene 1 took 2 hours and 54 minutes to
render.
Description of the table headers: Scene: Name
of the scene. Vw: The view of the scene. Preproc.:
Preprocessing time in seconds. Rend.: Rendering
time in seconds. Total: Total execution time. #
of rays: The total number of rays traced (x10°).
# of trav.:
(x10°). Awg.Trav.: Average traversal distance in-
cluding skips. Ratio: Ratio of the rendering time for
the SEADS implementation and the method under
consideration.

The total number of traversal steps

8 Analysis of Results

Tables 1-8, show a variety of empirical results. Ta-
ble 1 shows the properties of each scene for three dif-
ferent grid sizes. Notice that the percentage of empty
voxels is very high and therefore the objecis/vozel
column specifies the average number of objects con-
sidering only the occupied voxels. This gives us a
hint about how many intersection tests are necessary
every time the ray visits a non-empty voxel.
Memory requirements: A comparison of the
memory requirements for each of the four methods



is in Tables 1 and 2. Object memory: The object
memory is allocated during preprocessing to hold the
pointers to objects. Every voxel containing objects
has a linked list of object pointers. The requirements
is therefore dependent on the number of objects in
the scene and the level of subdivision. Grid mem-
ory: Every voxel data structure allocates enough
memory to at least hold a pointer (4 bytes). If the
voxel is empty, that is, if it does not contain any
objects, the same memory space is used to hold dis-
tance maps used by the different skip methods. De-
pending on the method used, 4-7 bytes/voxel may be
allocated.

We note that the object memory requirement of
all the four methods is same. The grid memory re-
quirement for DSZs and the Dual Extent implemen-
tations is twice of the SEADS and proximity clouds
implementations.

9 Summary of the results

For every scene, we have three different viewpoints
for that scene. Figure 8 and 9 show these scenes
from a variety of angles. Tables 1-16 summarize our
results.

As Tables 3-8 show, we have run exhaustive tests
in comparing all the four methods using different
grid sizes and scenes. The directed safe zone method
also has a linear time algorithm for preprocessing
the data with a larger constant of proportionality.
This results in a slightly higher time for preprocess-
ing for the DSZ method in comparison to the proxim-
ity cloud method. As expected, preprocessing times
for the DSZ method is 2-3 higher that that of the
proximity clouds. As preprocessing we need to find
height fields for every slice in the grid, both the pre-
processing time and memory requirements are higher
for the dual extent method. For example, preprocess-
ing times for the dual extents are 2-10 times higher
in comparison to the proximity clouds. During pre-
processing of the dual extent method, we exhausted
the run time memory (RAM) available on our sys-
tem for the grid size of 144 and the Flakes scene.
That is the reason, statistics are not available for
dual extent for the Flake scene in Tables 4 (Flake 1)
and 8 (Flake 1-3). We note that the preprocessing is
only necessary once for each scene which lets us ren-
der several images of different views and resolutions
without calculating the distance maps. So, it is the
rendering time which mainly determines the perfor-
mance of an algorithm Following is the summary of

our results from Tables 1-8:

e A large number of voxels are empty, and there-
fore it is beneficial to apply proximity clouds,
DSZ or the dual extent method to data. In
all cases, this is true as the value of the Ra-
tio is always greater than one. The proximity,
DE and DSZ methods are effective if we have
empty cells. If we were using a small gridsize,
the chances are that all cells may contain ob-
jects and therefore no clouds may form. In this
extreme case, the DSZ, the DE and the prox-
imity cloud method would fall back to a stan-
dard grid method in our implementation. In fact
the DSZ, the DE and the proximity cloud algo-
rithms induce some overhead, which makes stan-
dard traversal faster than DSZ skips for small
cloud-distances (D<5) in our implementation
(see also Section 3). Therefore, the reason for
choosing a gridsize greater than 64 for our tests
is to show the benefits of methods implemented
in this paper.

e The DSZ will always be faster than the prox-
imity cloud method, regardless of the gridsize,
since the MIN() of all direction distances is the
proximity cloud’s distance value.

e For all the cases, Proximity Clouds, Directed
Safe Zones, and the Dual Extent methods per-
form better than the SEADS implementation.
This is supported by the fact that the value of
Ratio in Tables 3-8 for Proximity clouds, DSZ
and DE methods is always greater than 1.

e As the grid size increases (or voxels become
smaller), the performance of the proximity
clouds, DSZ or the dual extents method improve
in their rendering times. Notice that the Ra-
tio values increase with the grid size for these
methods (Tables 3-8). Rendering times for the
SEADS methods worsen because a larger per-
centage of time is invested passing through the
empty regions.

e Rendering times for DSZ implementation are al-
ways equal or better that the proximity clouds
method. Only exception to this is Lanes with
grid size of 64 where proximity clouds is ever so
slightly better than the DSZ method. However,
as the grid size increases, DSZ becomes better
than the proximity clouds for even the Lanes
scene.



Proximity Clouds Implementation

he skips are longer. For Random scenes the im-

provement of the rendering time is more than 25%

compared to proximity clouds. We conclude that

SZ algorithm performs better than the proximity

cloud method. In future, we plan to also run our

lgorithms on Eric Haines datasets [7].

Due to the nature of Dual Extents, it benefits from

cenes forming lanes. This kind of topology is of-

en found in architectural scenes. The Dual Extent

Method proved to be 8-10% faster than even the DSZ

Scene Grid size # of | % of empty Objects
Scene Grid size voxels voxels | per voxel
Random 62x64x62 246016 97.2 1.09
Random 125x128x125 2000000 99.0 1.03
Random 141x144x140 2842560 99.1 1.03
Lanes 63x63x64 254016 67.7 5.76
Lanes 126x127x128 2048256 75.2 3.66
Lanes 142x143x144 2924064 75.2 3.32
Flake 64x64x64 262144 94.7 1.59
Flake 128x128x128 2097152 97.0 1.15
Flake 144x144x144 2985984 97.2 1.16
Cars 64x24x14 21504 85.9 2.81
Cars 128x49x28 175616 93.0 1.84
Cars 144x55x31 245520 93.8 1.75

Table 1: Spatial subdivision statistics.

Proximity Clouds (DSZ and Dual Extents)

Scene Grid size Object mem. Grid mem.

in MBytes in MBytes
Random | 62x64x62 0.06 (0.06) 0.94 (1.88)
Random | 125x128x125 0.16 (0.16) 7.63 (15.26)
Random 141x144x140 0.20 (0.20 10.84 (21.69)
Tanes 63x63x64 3.61 (3.61) 0.97 (1.94)
Tanes 126x127x128 | 14.20 (14.20) 7.81 (15.63)
Tanes 142x143x144 | 18.40 (18.40) | 11.15 (22.31)
Flake 64x64x64 0.17 (0.17) 1.00 (2.00)
Flake 128x128x128 0.55 (0.55) 8.00 (16.00)
Flake T44x144x144 0.74 (0.74a) | 11.39 (22.78%)
Cars 6ax24x14 0.07 (0.07) 0.08 (0.16)
Cars 128x49x28 0.17 (0.17) 0.67 (1.34)
Cars 144x55x31 0.20 (0.20) 0.94 (1.87)

Table 2: Memory requirements: Proximity Clouds;
DSZ and Dual Extent inside brackets. ¢ means Not
available for Dual extent.

e Most of the time, the Dual Extents method per-
forms better than the proximity clouds (Tables
3-8).

e The Dual extents method performs better than
both DSZ and proximity clouds method for the
Lanes scenes because of the topology of the
scene. This is the case for all the three grid

sizes.

e For Random scenes, the directed safe zones
method outperforms the proximity clouds by
substantial amounts, as the grid size increases
(See the Ratio values in Tables 3-8). Corre-
sponding dual extent performances are in the
middle of the DSZ and the proximity clouds
methods.

10 Conclusions and Further Research

The Directed Safe Zones Method always performs
better than the Proximity Clouds method because

ethod for scenes having a lot of rays parallel to the
lanes. The skip operation of the Dual Extent Method
uses a division operation in addition to the multipli-
cations which slows it down, yet the rendering time is
still lower for most scenes and grid resolutions com-
pared to the Proximity Clouds Method.

We have shown that it is further possible to speed
up ray tracing by taking advantage of spatial coher-
ence of a scene by using the Directed Safe Zones
and the Dual Extents method. We have success-
fully shown that it is possible to use directed distance
maps to make the rendering even faster in compar-
ison to the proximity clouds. As described in [15],
further improvements over the DSZ method are pos-
sible when we use 24 directed (four per wall) values
for voxels instead of six used in our implementation.
In addition, we expect further gains in the rendering
time when logarithmic distances are used.
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SEADS (Proximity clouds)

Grid size: 64

Scene-Vw Preproc. Rend. Total # of rays # of trav. Avg.trav Ratio
Random-1 (6.98) 287.4 (270.9) 287.4 (277.9) 1.37 (1.37) 121.3 (96.6) 1 (1.25) 1 (1.06)
Random-2 (6.98) 260.3 (247.2) 260.3 (254.2) 1.37 (1.37) 105.6 (84.97) 1 (1.24) 1 (1.05)
Random-3 (6.98) 269.5 (255.7) 269.5 (262.7) 1.39 (1.38) 109.6 (88.15) 1 (1.24) 1 (1.05)
Lanes-1 (17.53) 273.6 (258.8) 273.6 (276.3) 1.65 (1.65) 40.91 (40.91) 1 (1) 1 (1.06)
Lanes-2 (17.53) 364.9 (341.4) 364.9 (358.9) 2.03 (2.03) 49.3 (49.3) 1 (1) 1( 1.07)
Lanes-3 (17.53) 356 (330.1) 356 (347.6) 2.01 (2.01) 42.5 (42.5) 1 (1) 1 (1.08)
Flake-1 (7.67) 88.5 (58.1) 88.5 (65.7) 1.16 ( 1.15) 26.38 (6.21 ) 1 (3.69) 1(1.53)
Flake-2 (7.67) 83.72 (56.43) 83.72 (64.10) 1.16 (1.15) 23.81 (5.93) 1 (3.56) 1 (1.48)
Flake-3 (7.67) 83.84 (56.6) 83.84 (64.27) 1.16 (1.15) 23.77 (5.94) 1 (3.56) 1 (1.48)
Cars-1 (1.84) 77.73 (71.83) 77.73 (73.67) 1.21 (1.21) 8.69 (8.19) 1 (1.06) 1( 1.08)
Cars-2 (1.84) 86.67 (79.97) 86.67 ( 81.82) 1.23 ( 1.24) 10.05 (9.38) 1 ( 1.07) 1 (1.08)
Cars-3 (1.84) 98.82 (91.18) 98.82 (93.02) 1.26 (1.26) 12.31 (11.37) 1 (1.08) 1 (1.08)

Table 3: Rendering statistics for SEADS, and the proximity clouds in brackets. Grid size: 64.

Directed Safe Zones (Dual Extents)

Grid size: 64

Scene-Vw Preproc. Rend. Total # of rays # of trav. Avg.irav Ratio
Random-1 15.73 (223.1) 238.1 (250.70 253.83 (473.8) 1.37 (1.37) 64.56 (52.08) 1.86 (1.85) 1.21 (1.15)
Random-2 15.73 (223.1) 219.5 (233.3) 235.23 (456.4) 1.37 (1.37) 58.07 (47.35) 1.87 (1.81) 1.19 (1.12)
Random-3 15.73 (223.1) 227.3 (241.2) 243.03 (464.3) 1.39 (1.39) 60.73 (49.87) 1.86 (1.81) 1.19 (1.12)
Lanes-1 25 (36.9) 263.8 (250.2) 288.8 (287.1) 1.65 (1.65) 38.29 (30.61) 2.24 (1.27) 1.04 (1.09)
Lanes-2 25 (36.9) 346.1 (336.2) 371.1 (373.1) 2.04 (2.03) 45.33 (37.71) 2.34 (1.21) 1.05 (1.08)
Lanes-3 25 (36.9) 333.1 (329.7) 358.1 ( 366.6) 2.01 (2.01) 38.20 (33.69) 2.74 (1.15) 1.07 (1.08)
Flake-1 17.22 (a/a) 55.58 (a/a) 72.8 (a/a) 1.15 (a/a) 2.70 (a/a) 5.73 (a/a) 1.59 (a/a)
Flake-2 17.22 (1093) 54.44 (55.59) 71.66 (1148.59) 1.15 (1.15) 4.62 (4.11) 5.35 (5.20) 1.54 (1.51)
Flake-3 17.22 (1093) 54.57 (55.77) 71.79 (1148.77) 1.16 (1.15) 4.62 (4.14) 5.28 (5.19) 1.54 (1.50)
Cars-1 2.56 (7.82) 71.66 (70.67) 74.23 (78.49) 1.21 (1.21) 6.84 (5.63) 4.0855 ( 1.47) 1.08 (1.10)
Cars-2 2.56 (7.825) 79.45 (78.65) 82.01 (86.48) 1.23 (1.23) 7.63 (6.59) 4.3751 (1.50) 1.09 (1.10)
Cars-3 2.56 (7.83) 90.21 (90.43) 92.77 (98.23) 1.27 (1.27) 9.03 (8.38) 4.45 (1.39) 1.10 (1.09)

Table 4: Rendering statistics for Directed Safe Zones and the Dual Extent method in brackets. Grid size:

64.
SEADS (Proximity Clouds)

QGrid size: 128

Scene-Vw Preproc. Rend. Total # of rays # of trav. Avg.trav. Ratio
Random-1 (46.9) 482.9 (323.5) 482.9 (370.4) 1.37 (1.37) 243.57 (100.60) 1 (2.12) 1 (1.49)
Random-2 (46.9) 229.8 (297.2) 229.8 (344.1) 1.37 (1.37) 211.89 (91.13) 1 (2.07) 1 (1.45)
Random-3 (46.9) 245.2 (310.5) 245.2 (357.4) 1.389 (1.38) 219.92 (96.72) 1 (2.04) 1 (1.44)
Lanes-1 (74.17) 327.4 (311.4) 327.4 (385.57) 1.66 (1.66) 80.96 (67.98) 1 (1.15) 1 (1.08)
Lanes-2 (74.17) 422.4 (394.8) 422.4 (468.97) 2.04 (2.04) 96.82 (79.71) 1 (1.17) 1 (1.07)
Lanes-3 (74.17) 404.9 (376) 404.9 (450.17) 1.99 (1.99) 84.37 (68.81) 1 (1.18) 1 (1.08)
Flake-1 (49.98) 131.4 (66.39) 131.4 (116.37) 1.15 (1.18) 52.55 (6.99) 1 (6.49) 1 (1.98)
Flake-2 (49.98) 122.3 (64.86) 122.3 (114.84) 1.15 (1.18) 47.44 (6.79) 1 (6.17) 1 (1.89)
Flake-3 (49.98) 122.3 (65.08) 122.3 (115.06) 1.15 (1.18) 17.36 (6.82) 1 (6.14) 1 (1.88)
Cars-1 (6.59) 86.28 (76.84) 86.28 (83.44) 1.21 (1.21) 17.31 (11.79) 1 (1.45) 1 (1.12)
Cars-2 (6.59) 96.47 (85.67) 96.47 (92.2) 1.24 (1.24) 20.06 (18.77) 1 (1.42) 1 (1.13)
Cars-3 (6.595) 111 (98.51) 111 (105.12) 1.27 (1.27) 24.6 (17.13) 1 (1.42) 1 (1.13)

Table 5: Rendering statistics for SEADS, and the proximity cloud method in brackets. Grid size: 128.
Directed Safs Zones (Dual Extents)

QGrid size: 128

Scene-Vw Preproc. Rend. Total # of rays # of trav. Avg.trav Ratio
Random-1 118 (2856) 251.1 (284.7) 369.1 (3140.7) 1.37 (1.37) 53.99 (49.39) 3.59 (3.43) 1.92 (1.70)
Random-2 118 (2856) 232 (260) 350 (3116) 1.37 (1.37) 48.72 (43.85) 3.56 (3.45) 1.85 (1.65)
Random-3 118 (2856) 242.2 (273.1) 360.2 (3129.1) 1.38 (1.38) 51.96 (46.91) 3.47 (3.38) 1.84 (1.63)
Lanes-1 138.2 (743.6) 291.7 (266.8) 429.9 (1010.4) 1.65 (1.65) 47.21 (30.48) 2.11 (2.26) 1.12 (1.23)
Lanes-2 138.2 (743.6) 368.3 (357.3) 506.5 (1100.9) 2.03 (2.03) 53.55 (40.02) 2.22 (1.97) 1.15 (1.18)
Lanes-3 138.2 (743.6) 351.1 (354.4) 489.3 (1098) 1.99 (1.99) 45.13 (37.28) 2.41 (1.81) 1.15 (1.14)
Flake-1 127.4 (n/a) 64.56 (n/a) 191.96 (n/a) 1.15 (n/a) 5.48 (n/a) 9.23 (n/a) 2.04 (n/a)
Flake-2 127.4 ( 823.9) 63.51 (68.61) 190.91 (892.51) 1.15 (1.18) 5.44 (4.74) 8.52 (8.99) 1.93 (1.78)
Flake-3 127.4 (823.9) 63.72 (68.86) 191.12 (892.76) 1.15 (1.18) 5.47 (4.79) 8.46 (8.92) 1.92 (1.78)
Cars-1 12.72 (215.8) 74.3 (73.49) 87.02 (289.29) 1.21 (1.21) 8.83 (7.21) 3.77 (2.18) 1.16 (1.17)
Cars-2 12.72 (215.8) 82.08 (82.05) 94.8 (297.85) 1.23 (1.23) 10.04 (8.71) 3.53 (2.19) 1.18 (1.18)
Cars-3 12.72 ( 215.8) 93.08 (95.15) 105.8 (310.95) 1.26 (1.26) 12.01 (11.23) 3.32 (2.00) 1.19 (1.17)

Table 6: Rendering statistics for Directed Safe Zones, and the Dual Extent method in brackets. Grid size:
128. Data not available for Flake 1

SEADS (Proximity Clouds)

Grid size: 144

Scene-Vw Preproc. Rend. Total # of rays # of trav. Avg.trav. Ratio
Random-1 (66.15) 532.4 (329.5) 532.4 (395.65) 1.37 (1.37) 273.88 (98.15) 1 (2.37) 1 (1.62)
Random-2 (66.15) 472.8 (303.4) 472.8 (369.55) 1.37 (1.37) 238.30 (89.12) 1 (2.31) 1 (1.56)
Random-3 (66.15) 489.9 (316.8) 489.9 (382.95) 1.38 (1.38) 247.35 (94.54) 1 (2.27) 1 (1.55)
Lanes-1 (103.3) 355.9 (334.7) 355.9 (438) 1.66 (1.66) 90.26 (70.8342) 1 (1.22) 1 (1.06)
Lanes-2 (103.3) 456 (421) 456 (524.3) 2.04 (2.04) 109.74 (83.9657) 1 (1.24) 1 (1.08)
Lanes-3 (103.3) 433 (398.4) 433 (501.7) 2.01 (2.01) 93.79 (71.42) 1 (1.24) 1 (1.09)
Flake-1 (70.4) 142.6 (70.43) 142.6 (140.83) 1.15 (1.15) 59.06 (7.24) 1 (7.04) 1 (2.03)
Flake-2 (70.4) 132.4 (68.89) 132.4 (139.29) 1.16 (1.15) 53.31 (7.05) 1 (6.68) 1 (1.92)
Flake-3 (70.4) 132.4 (69.05) 132.4 (139.45) 1.15 (1.15) 53.22 (7.08) 1 (6.656) 1 (1.92)
Cars-1 (8.631) 89.5 (78.62) 89.5 (87.25) 1.21 (1.21) 19.30 (12.32) 1 (1.51) 1 (1.14)
Cars-2 (8.631) 100.1 (87.64) 100.1 (96.27) 1.23 (1.238) 22.38 (14.46) 1 (1.50) 1 (1.14)
Cars-3 (8.631) 115.4 (100.9) 115.4 (109.53) 1.26 (1.26) 27.47 (18.06) 1 (1.49) 1 (1.14)

Table 7:

Rendering statistics for SEADS, and the proximity cloud method in brackets. Grid size: 144.



Directed Safe Zones (Dual Extent)

Grid size: 144

Scene-Vw Preproc. Rend. Total # of rays # of trav. Avg.irav Ratio
Random-1 167.1 (1611) 254.1 (291.5) 421.2 (1902.5) 1.37 (1.37) 52.03 (48.70) 4.06 (3.84) 2.10 (1.83)
Random-2 167.1 (1611) 235.3 (266.3) 402.4 (1877.3) 1.37 (1.37) 47.01 (43.20) 4.01 (3.88) 2.01 (1.78)
Random-3 167.1 (1611) 245.4 (279.2) 412.5 (1890.2) 1.38 (1.38) 50.02 (46.12) 3.92 ( 3.80) 2.00 (1.76)
Lanes-1 194.6 (1316) 312 (286.2) 506.6 (1602.2) 1.66 (1.66) 48.32 (31.11) 2.17 (2.46) 1.14 (1.24)
Lanes-2 194.6 (1316) 390.2 (379.3) 584.8 (1695.3) 2.04 (2.03) 55.42 (41.63) 2.29 (2.13) 1.17 (1.20)
Lanes-3 194.6 (1316) 370.5 (375.4) 565.1 (1691.4) 2.01 (2.01) 46.36 (38.45) 2.48 (1.94) 1.17 (1.15)
Flake-1 181.1 (n/a) 68.77 (n/a) 249.87 (n/a) 1.16 (n/a) 5.65 (n/a) 9.99 (n/a2) 2.07 (n/a)
Flake-2 181.1 (n/a) 67.74 (n/a) 248.84 (n/a) 1.16 (n/a) 5.63 (n/a) 9.20 (n/a) 1.96 (n/a)
Flake-3 181.1 (n/a) 67.92 (n/a) 249.02 (n/a) 1.16 (n/a) 5.67 (n/a) 9.13 (n/a2) 1.95 (n/a)
Cars-1 17.23 (373.9) 75.76 (75.11) 92.99 (449.01) 1.21 (1.21) 9.16 (7.50) 3.75 (2.33) 1.18 (1.19)
Cars-2 17.23 (373.9) 83.54 (83.76) 100.77 (457.66) 1.23 (1.23) 10.43 (9.06) 3.55 (2.34) 1.20 (1.20)
Cars-3 17.23 (373.9) 94.72 (97.2) 111.95 (471.1) 1.26 (1.26) 12.50 (11.69) 3.33 (2.14) 1.21 (1.18)

Table 8: Rendering statistics for Directed Safe Zones, and the Dual Extent method in brackets. Grid size:
144.

Figure 10: Random (a, b and c), and Lanes (d, e, f) .

Figure 11: Flakes (a, b and ¢), and Cars (d, e, f) .
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