Visual Metaphors for Understanding Logic Program Execution

Eric Neufeld, Anthony J. Kusalik, and Michael Dobrohoczki
Department of Computational Science
University of Saskatchewan
Saskatoon, Saskatchewan, Canada, STN OWO0

{neufeld,kusalik,dobro}@cs.usask.ca

Abstract

A classic notion in logic programming is the sep-
aration of logic and control. Logic is for problem
solving; control is for directing inference. However,
practical experience in the classroom suggests that
problem-solving students nonetheless devote much
effort to understanding control issues such as elim-
inating looping behaviours and improving program
efficiency.

In the case of Prolog, this requires a clear un-
derstanding of the operation of both unification and
backtracking. Students often try to get this under-
stand by tracing executions, but the common four-
port debugger used in Prolog is not as helpful as it
could be. In particular, it provides information in
low bandwidth textual form.

This paper describes a new visualization system
for logic programming that uses colour tagging to
trace unification through the Prolog proof tree. A
user can dynamically “tag” a term or subterm with
a colour that is immediately propagrated through
the displayed tree. The colour is also propagated
through the proof tree on subsequent execution
steps. This “colour unification” has an interesting
relationship with usual Prolog unification. Initial ex-
periences reveal several interesting visual metaphors
that assist understanding of logic program execution.
Experience to date also suggests new directions for
visualization of logic programs.

Keywords: (program) ezecution visualization, pro-
gramming tools, colour

1 Introduction

Advocates of logic programming sometimes sum up
their view of computing with Kowalski’s [Kow79a]
phrase:

ALGORITHM = LogGIc + CONTROL .

This is interpreted to mean that programmers are
freed from worrying about control issues. Instead,
they become problem solvers, succinctly stating
premises and queries in the first-order predicate cal-
culus, after which an independent control module or
program executor derives proofs of queries from the
premises by appropriately controlling the direction
of inference. Kowalski argues [Kow79b] that, among
other things, this conceptual separation allows inex-
perienced programmers to focus on the logic compo-
nent, leaving the control component to the computer.

Although logical languages such as Prolog give the
problem solver a powerful language in which to ex-
press problems and indeed free the problem solver
from much of the tedium of computer programming,
the authors find that even in introductory treatments
of Prolog, students spend a lot of time understanding
programming techniques dictated by Prolog’s pro-
cedural semantics. For example, the backtracking
and unification algorithms exhibit many subtleties,
especially in the context of the ‘cut’ [OK90]. As
well, clauses often must be reordered to eliminate
looping behaviours. As a final example, difference
lists and accumulator variables, used to improve ef-
ficiency, seem to be better understood by some stu-
dents when given a procedural interpretation.

A useful exercise for Prolog learners, both for gain-
ing an understanding of how Prolog works and for
understanding or debugging their own programs, is
tracing execution. One possible tool for tracing is the
common four-port debugger [Byrd80]. However, this
debugger has certain limitations because it provides
information in low bandwidth textual form; roughly
speaking, it prints the procedure call showing bound
variables, as well as other information describing the
state of the computation. Novice users find this un-
satisfying. They also find the surfeit of information
reported baffling or bewildering.

To help learners understand the execution model
of Prolog, we have built a protypical system that
animates the construction of the Prolog proof tree
and uses colour tagging to help visualize unifica-
tion. Most systems for graphically visualizing Prolog
[Boja89, DeCl86, EiBr88] focus on portraying suc-
cess or failure of clauses and backtracking, and use
an AND/OR tree or some subset thereof to show uni-
fication between a subgoal and a clause head. How-
ever, these systems provide little visual information
on the effects of unification on the rest of the tree.
The system described here dynamically displays the
Prolog proof tree, but also allows a user to tag a term
or subterm with a colour that is immediately prop-
agated backwards and forwards through the proof
tree, and continues to be propagated as the compu-
tation continues. Like-coloured terms are joined by
coloured lines at the point of unification. The user
may subsequently “clear” the view by “uncolouring”
terms. Another interesting feature of this system is
that it provides a real-time animation of the proof
tree, and not just a static display of the final proof.
(Some of these animations are interesting in their
own right; for instance, nondeterministic programs
constructing a list of unbound variables of the right
length. This topic is not pursued further here.)

The system was built with the belief that certain
visual metaphors would emerge as users worked with
the system, and in turn these metaphors would be
useful in pedagogy. The speculation was that cer-
tain patterns of colour might characterize frequently-
used operations (e.g., decomposition of data struc-
tures) and movements of colour might characterize
others (e.g., returning an answer through an accumu-
lator variable). Initial experience with this system
confirms that such metaphors arise and that they
seem to aid understanding of program structure and
also assist in trouble-shooting incorrect programs. In
fact, it seemed easier to debug the examples provided
herein because of the availability of colour. Some of
the anticipated metaphors turned out to be inter-
esting, and some new metaphors appeared. They
are consequences of the movement of colour during
program execution, but also of the relationships of
coloured figures.

The following section explains how colour unifica-
tion works. The rest of the paper describes some
of the visual metaphors found, and their use for de-
bugging or understanding programs. As program-
ming languages evolve, and more and more compu-
tation takes place “behind the scenes” (for exam-
ple, constructors and destructors in object-oriented

languages), it seems reasonable to believe that these
ideas will find wider applicability in the visualization
of high level programming languages.

2 How colour unification works

This paper presumes an understanding of Prolog’s
backtracking and unification algorithms [Cl1Me94,
OK90]. (For the reader unfamiliar with Prolog,
the following approximation may help. Prolog al-
lows multiple definitions of procedures, in the same
way object-oriented languages allow overloading of
function definitions, except that Prolog allows mul-
tiple definitions of procedures with the same type
signature. The execution model allows backtrack-
ing through such multiply-defined procedures until a
successful execution path is found. Unification can
be thought of as Prolog’s parameter-passing mecha-
nism. However, unification is much more than that
since, for instance, given two different calls of the
same procedure, a particular variable could be an
input variable in one case and an output variable in
the other.)

To track the attachment of bindings to particu-
lar terms, a colour attribute is associated internally
with each term by the Prolog interpreter. Via a
graphical user-interface, a user of the system may
paint any term, including constant terms, with a
colour. The unification algorithm is extended to
unify colour attributes whenever two terms success-
fully unify. Three cases arise:

1. Neither term has a colour; i.e. the colour at-
tribute is not set for either term. In this case,
the terms are made to share the same colour at-
tribute. This means that if one of the terms is
subsequently given a colour by explicit user ac-
tion (i.e. “tagging”) or via unification, the set-
ting of the colour attribute will also affect the
other term. Shared colour attributes let the user
colour and uncolour terms “on the fly” to view
relationships among different variables.

2. Only one term has colour. The uncoloured term
takes on the colour of the coloured term.

3. Both terms have a colour. If the colours are the
same, there is nothing to consider. Otherwise
there is a colour conflict.

The effects of colour unification are undone on back-
tracking, just as other effects of normal unification.

Several approaches to handling colour conflicts
have been investigated. As a technical detail, it is
necessary that colour unification succeed whenever

normal unification would, even when conflicts do not
result in colour matching. The simplest approach is
to not change the colour of either term. This makes
it easy to locate a point where two constants are
matched. Alternately, the colour unification algo-
rithm can choose the dominant colour from the term
“higher” in the stack or heap, or use a predefined
colour hierarchy. As well, colours could be made to
mix in various ways. Initially, the simple approach
of not changing either colour when a colour conflict
occurs was implemented. However, the system is be-
ing extended to allow users to dynamically select the
course of action followed by system. Such an exten-
sion will allow gathering of feedback on which ap-
proaches to the colour conflict problem are most ap-
pealing and useful.

A related issue is whether it should be possible to
allow identical terms (not made this way by unifica-
tion) to be coloured differently or whether it should
be possible to automatically colour all identical terms
identically. Which is ideal will probably be decided
empirically by preferences of users.

3 The Colour Prolog System
A Prolog interpreter implementing colour unifica-
tion and colour tagging has been implemented using
C and standard X-Windows libraries. The system
provides both a text-oriented interface (for input of
queries, and overall control of the system) and a vi-
sual interface. The visual interface consists of a large
pane in which the execution tree is drawn, and well
as buttons for controlling aspects of the execution
and scroll bars for positioning large images. Mouse
clicks while the cursor is over a term in the drawn tree
are used to tag terms with colour. Each mouse but-
ton corresponds to a different colour. Mouse clicks
are interpreted as toggles, in that tagging an already-
coloured term will “untag” (i.e. uncolour) that term.
The visual interface is exemplified in the screen
dump in Figure 1 !. Since details of that interface are
secondary to this discussion, the buttons and scroll
bars are eliminated from the screen dumps in remain-
ing figures.

4 Visual metaphors in logic program execu-
tion

Colour tagging of certain terms results in interesting

characteristic patterns. All images in this section

were produced by our system.

IThe figures can be seen in full-colour in the elec-
tronic version of the conference proceedings, or obtained via
http://www.cs.usask.ca/projects/envlop/Colour_Prolog
/GI9T.

4.1 Building up answers
The following logic program

find_vowel([1, [1).
find_vowel([H|T1], [HIT2]) :-
vowel (H),
find_vowel(T1, T2).
findvowel([HIT1], T2) :-
findvowel(T1, T2).
vowel(a). vowel(e).
vowel(o). vowel(u).

vowel(1).

when called with a query such as

?- find_vowel([a,b,e,i,p,0], Answer) ,
gradually “builds up” the answer variable, passing
additions upward as it recurses through the input
list, as Figure 1 shows.

This program is more interesting as an anima-
tion, where the user literally sees the answer variable
“built up”.

4.2 Accumulator variables

More spectacular is the behaviour of “accumula-
tor variables”, where answers are accumulated, but
passed downward (toward the leaves of the tree).
When the program encounters its base case, the ac-
cumulated result is usually unified with an answer
variable and returned upwards (towards the root of
the tree). This propagation from the bottom to the
top of the tree is generally a significant event dur-
ing an animation, especially if an answer is passed
back after a deep computation. A classic example
of a program with accumulator variables is the “list
reverse” predicate reverse/3:

reverse([], L, L).
reverse([Hd|T1], AccumL, FinalL) :-
reverse(T1l, [Hd|AccumL], FinalL).

For reasons of efficiency (see discussion of “naive re-
verse” below), the answer is constructed by cons-ing
the current head of the input list to the head of an
answer list that must be passed downwards. Thus,
in the program above the first argument is the list
being reversed, the second is the accumulating re-
versed list, and the last is the final result (the re-
versed list). The first two arguments are sometimes
merged into a single argument, and the predicate
known as “difference-list reverse”.

Figure 2 shows an initial query where the user has
tagged the two elements of the input list red and
green. Figures 3 and 4 illustrate the colours prop-
agating as the program recurses. The “crossovers”
show the answer list being built up. Figure 5 gives a

— Color Prolog Display 1.0 | 5| =

Find_wouwesl

woel g find_woweld{[1,01>

¥

|

1 fi'iiié;il Bfay gl ii'aééwi&l MNext Sulutiunl MNew Quervl

f%i;{;;*i“’

Figure 1: find_vowel/2 example

reverseld,b,[1.[1,_5>

Figure 2: Initial tagging of terms in reverse/38 query

reverseta,b,[1,.[]1,_G>

reverseckh,[1,8,01,._52
Figure 3: Second step in reverse/3 query

reversela, b, [1,[]1,_G>

reverselh,

PEHEPEEi[]lb+ LL1._ 52

Figure 4: Third step in reverse/3 query

sense of what happens when the base case is reached
and all the colours of the answer list immediately

reverseta, b, [1,.[]1. k.,

reversech, L[],

reverse([]. b,

Figure 5: Final step in reverse/8 query

propagate from the bottom to the top of the tree.
Such bursts of colour signal completion.

Figure 6 illustrates tagging “on the fly”. The an-
swer variable was coloured blue after resolution was
complete. This confirms the action of the differ-
ence list accumulator; the portion of the output that
comes after the reverse input list is none other than
the second argument of the original query.

To give another example of the impression con-
veyed by completion of accumulation, consider an
alternate situation. The initial query is similar to
the one before, but the colour tagging scheme is dif-
ferent. In this case, green marks the elements of the
input list, red marks the base case of the list, and

reverseta, b, []1,

PEHEPEEﬂb+[]la+

reverse([], . b,.a,

Figure 6: On-the-fly tagging in reverse/8 example

the answer variable is tagged blue. Figure 7 shows
execution nearly complete, with green crossovers il-
lustrating the cons-ed output list formation. The
dramatic movement of blue and green arcs to the
initial query in Figure 8 indicates that a solution

reversela,b,c,d, 03,01, 08
|
[
reverseih,c,d.[].a,[1.E8>

|
reverselc,d, II! 1.b,a,.[1,E58

reverseld,[d c,b,a,[] B8

Figure 7: Nearing completion of alternate reverse/3
query

has been found and returned.

4.3 Program efficiency

The logic program of the previous subsection is a
classic example of using accumulator variables to
make an inefficient program efficient. The so-called
“naive reverse”

nrev([1, [1).

nrev([HA|T1], RevL) :-
nrev(Tl, RevTl),
append(RevTl, [Hd], RevL).

append([1, L, L).
append([H4|T1], L2, [Hd|Res]) :-
append(Tl, L2, Res).

is O(n?/2) in the size of its input list, since it must
on average execute an append/3 of n/2 elements on
each of n steps.

reverseda,b,c.d, II: 1,03 - i =0T

reversedh,c,d, 01, 800 okl =000

reversedc,d. 0] bilaGiET okl =L »

a1 desib,a, [0

reversedd,[],

reversel|[] ,c! k!a",c!c!k!a")

Figure 8: Completion of alternate reverse/3 query

Figure 9 depicts correct execution of the
naive_reverse/2 predicate. In this example, the three
different elements of the input list are coloured dif-
ferently. Note that the proof tree contains three
coloured append “clusters”. Interestingly, each clus-
ter contains a copy of the coloured append cluster to
its left, suggestive of the execution complexity of the
program. This proofis “wide”, and contains copies of
portions of itself, whereas the proof tree for accumu-
lating list reverse (Figures 2-8) is narrow and doesn’t
contain this kind of visual redundancy. Hence, the
operational behaviour and efficiency for both formu-
lations of list reverse are evident from the output
provided by the system.

4.4 Program Errors

Visual metaphors provided by the system have also
proven useful for debugging programs: they can por-
tray errors resulting from problems in program logic
or from misunderstandings of the procedural seman-
tics of Prolog. For example, the display in Figure
10 shows the final step in a query using an erro-
neous formulation of the accumulating reverse pred-
icate. From the display, it is evident that the result
in the accumulating variable is not being returned
(through the last variable). A problem with pred-
icate arguments is suspected. Since terms are be-
ing propogated correctly in preceding steps (as evi-
denced by the colour bands), the error is most likely
in the base case of the predicate. This, in fact, is the
correct diagnosis, as the erroneous program used to
create the display was

reverse([1, X, Y). Y% error here

nrev(a+!;F+E],c. JE.[1

nrev(c.fﬁjﬁ.[])

ff{,fi,/”xhxhﬁah
nrewi L], 012 appetd([1.c,[1,c.010

appendi(c,[1.8.[1,c.B.C1>

append (L1 B.[1.B.[1>

append(c,B,[1.3,01.c,8,8,01>

append(B.[1.3.[1.B.5.01>

append([]./a.01,5,01)

Figure 9: Correctly executed “naive reverse”

r*euer*se'iabu,,[],[],_ﬁh
r‘e'u'er*E.E-'imf Cl1,a,.C1,._52

reverser +E!I,k:-+a+E],_5:-

reversel[]l,g.b.a.[]1,_&E>

Figure 10: Completion of erroneous reverse/3 pro-
gram

reverse([H|T],X,Y) :-
reverse(T,[HIX],Y).

Logical errors also frequently express themselves
with recurrent visual motifs. A beginning Prolog
programmer might write the following formulation
for “naive reverse”:

nrev([1, [1).

nrev([HA|T1], RevL) :-
append([Hd], T1l, NewRev),
nrev(NewRev, RevlL),

Figure 11 shows an image given by the system for
this example. What should be evident to the user
is that the problem (at each level of recursion) is
getting no smaller. In fact, the problem at each level
is simply a new instance of the previous one. Thus,
the user can not only see that there is an error, but
what the nature of that error might be.

5 Conclusions and Future Directions

The Prolog visualization system described here pro-
vides and supports visual metaphors that may help
learners of logic programming more quickly get a bet-
ter understanding of logic program execution. This

paper has presented a sampling of these metaphors,
and illustrated how they might be useful.

Other possibilities for assisting users learn and un-
derstand logic programs are being implemented and
explored. For instance, a peculiarity of Prolog is that
when unification fails, everything is lost. However,
errors commonly occur when using negation as fail-
ure, which works precisely when unification fails. It
might be useful for failed branches to leave a faint
trace, rather than disappear altogether.

Another idea, also under implementation, is in-
put program colouring. The need for such a facil-
ity arises when using the system to debug a pro-
gram with many predicates of the same name and
arity. Trying to trace execution of such predicates,
especially with the four-port debugger, is confusing.
However, tracing is simpler if different input clauses
of the same name and arity can be coloured differ-
ently; the location of a bug can be pinpointed when
it occurs under an instance of a clause of a particular
colour.

A problem with the present system is that even
modest programs can quickly use up significant
screen real estate. Although a Prolog novice can
learn a lot by carefully studying a modest program,
a wider view for program execution is essential for
debugging more practical programs. We are investi-
gating simple perspective transformations that will
allow the user to look closely at certain parts of pro-
grams, while maintaining contact with relevant data
in distant parts of the program through colour traces.

Acknowledgements

We would like to thank the reviewers for some use-
ful constructive criticism on an earlier draft of this
paper, and NSERC for research funding.

References
[Byrd80] L. Byrd, “Understanding the Control
Flow of PROLOG Programs”, Pro-

ceedings of the Logic Programming

append(a.],

appendic[]B.c.

[Boja89]

[CIMe94]

[DeCI86]

[EiBrs8g]

[HS96]

[KowT79a]

[Kow79b]

[0K90]

mrevod Bac. 01, 52

appendia,C],

appendi[].B.c.

nreviE.l. o,

Figure 11: Erroneous “naive reverse”

Workshop, edited by S.-A. Tarnlund,
pp. 127-138, 1980.

D. Bojantchev, “XPGT User’s Guide”,
Computer Science and Engineering De-
partment, Case Western Reserve Uni-
versity, Cleveland, Ohio, 1989.

W. Clocksin and C. Mellish, Program-
ming in Prolog, 4th edition, Springer-
Verlag, 1994.

A. Dewar and J. Cleary, “Graphical
display of complex information within
a Prolog debugger”, in International
Journal of Man-Machine Studies, Vol.
25, 1986, pp. 503-521.

M. Eisenstadt and M. Brayshaw, “The
Transparent Prolog Machine (TPM):
An execution model and graphical de-
bugger for logic programming”, Jour-
nal of Logic Programming, Vol. 5, No.
4, 1988, pp. 277-342.

J. D. Horton and B. Spencer, “Clause
trees: a tool for understanding and
implementing resolution in automated
reasoning”, Artificial Intelligence, ac-
cepted for publication.

R. Kowalski. “Algorithms = Logic
+ Control”, Communications of the
ACM, Vol. 22, No. 7, pp. 424-436,
1979.

R. Kowalski, em Logic for Problem
Solving, Elsevier Science Publishing,
1979.

R. O’Keefe, em The Craft of Prolog,
MIT Press, 1990.

nrev(étiic.[],_ﬁ)

